論文の概要: Self-Supervised Learning of Grasping Arbitrary Objects On-the-Move
- arxiv url: http://arxiv.org/abs/2411.09904v1
- Date: Fri, 15 Nov 2024 02:59:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:37:14.336112
- Title: Self-Supervised Learning of Grasping Arbitrary Objects On-the-Move
- Title(参考訳): 任意物体を移動させる自己教師付き学習
- Authors: Takuya Kiyokawa, Eiki Nagata, Yoshihisa Tsurumine, Yuhwan Kwon, Takamitsu Matsubara,
- Abstract要約: 本研究では3つの完全畳み込みニューラルネットワーク(FCN)モデルを導入し,視覚入力から静的グリッププリミティブ,動的グリッププリミティブ,残留移動速度誤差を予測する。
提案手法は高い把握精度とピック・アンド・プレイス効率を実現した。
- 参考スコア(独自算出の注目度): 8.445514342786579
- License:
- Abstract: Mobile grasping enhances manipulation efficiency by utilizing robots' mobility. This study aims to enable a commercial off-the-shelf robot for mobile grasping, requiring precise timing and pose adjustments. Self-supervised learning can develop a generalizable policy to adjust the robot's velocity and determine grasp position and orientation based on the target object's shape and pose. Due to mobile grasping's complexity, action primitivization and step-by-step learning are crucial to avoid data sparsity in learning from trial and error. This study simplifies mobile grasping into two grasp action primitives and a moving action primitive, which can be operated with limited degrees of freedom for the manipulator. This study introduces three fully convolutional neural network (FCN) models to predict static grasp primitive, dynamic grasp primitive, and residual moving velocity error from visual inputs. A two-stage grasp learning approach facilitates seamless FCN model learning. The ablation study demonstrated that the proposed method achieved the highest grasping accuracy and pick-and-place efficiency. Furthermore, randomizing object shapes and environments in the simulation effectively achieved generalizable mobile grasping.
- Abstract(参考訳): 移動把握はロボットの移動性を利用して操作効率を向上させる。
本研究の目的は,移動体把握のための市販オフザシェルフロボットの実現であり,正確なタイミングとポーズ調整を必要とする。
自己教師付き学習は、ロボットの速度を調節し、対象物体の形状とポーズに基づいて、把握位置と方向を決定するための一般化可能なポリシーを開発することができる。
モバイルグリーピングの複雑さのため、試行錯誤から学習する際のデータの分散を避けるためには、アクションプライオリティナイゼーションとステップバイステップ学習が不可欠である。
本研究は,移動体把持動作プリミティブと移動動作プリミティブの2つに分割し,マニピュレータの自由度を制限して操作する。
本研究では3つの完全畳み込みニューラルネットワーク(FCN)モデルを導入し,視覚入力から静的グリッププリミティブ,動的グリッププリミティブ,残留移動速度誤差を予測する。
2段階のグリップ学習アプローチは、シームレスなFCNモデル学習を容易にする。
アブレーション実験により,提案手法は高い把握精度とピック・アンド・プレイス効率を達成した。
さらに、シミュレーションにおける物体形状や環境のランダム化は、一般化可能な移動把握を効果的に達成した。
関連論文リスト
- Learning Low-Dimensional Strain Models of Soft Robots by Looking at the Evolution of Their Shape with Application to Model-Based Control [2.058941610795796]
本稿では,低次元物理モデル学習のための合理化手法を提案する。
各種平面ソフトマニピュレータを用いたシミュレーションにより,本手法の有効性を検証した。
物理的に互換性のあるモデルを生成する方法のおかげで、学習したモデルはモデルベースの制御ポリシーと簡単に組み合わせることができる。
論文 参考訳(メタデータ) (2024-10-31T18:37:22Z) - Towards Real-World Efficiency: Domain Randomization in Reinforcement Learning for Pre-Capture of Free-Floating Moving Targets by Autonomous Robots [0.0]
本研究では,微小重力環境下でのロボットプレグラスピングの複雑な課題に対処するために,深層強化学習に基づく制御手法を提案する。
本手法は,ソフトアクター・クリティックな手法を用いて,自由な移動物体にグリッパーが十分に接近できるように,非政治強化学習の枠組みを取り入れたものである。
プレグラスピングのアプローチタスクを効果的に学習するために,エージェントに明確で洞察に富んだフィードバックを提供する報酬関数を開発した。
論文 参考訳(メタデータ) (2024-06-10T16:54:51Z) - Distributed Robust Learning based Formation Control of Mobile Robots based on Bioinspired Neural Dynamics [14.149584412213269]
まず,変数構造とカスケード設計手法を用いた分散推定器を導入し,実時間性能向上のための微分情報の必要性を排除した。
そして、スムーズな制御入力を提供し、スピードジャンプ問題を効果的に解決することを目的とした、バイオインスパイアされたニューラルダイナミックベースのアプローチを用いて、キネマティックトラッキング制御法を開発した。
完全に未知の力学と乱れを持つロボットの課題に対処するために,学習に基づく頑健な動的コントローラを開発した。
論文 参考訳(メタデータ) (2024-03-23T04:36:12Z) - Modular Neural Network Policies for Learning In-Flight Object Catching
with a Robot Hand-Arm System [55.94648383147838]
本稿では,ロボットハンドアームシステムによる飛行物体の捕獲方法の学習を可能にするモジュラーフレームワークを提案する。
本フレームワークは,物体の軌跡予測を学習するオブジェクト状態推定器,(ii)捕捉対象のポーズのスコアとランク付けを学ぶキャッチポーズ品質ネットワーク,(iii)ロボットハンドをキャッチ前ポーズに移動させるように訓練されたリーチ制御ポリシ,(iv)ソフトキャッチ動作を行うように訓練された把握制御ポリシの5つのコアモジュールから構成される。
各モジュールと統合システムのシミュレーションにおいて、我々のフレームワークを広範囲に評価し、飛行における高い成功率を示す。
論文 参考訳(メタデータ) (2023-12-21T16:20:12Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
ロボット強化学習のためのリセット不要な微調整システムであるRoboFuMEを紹介する。
我々の洞察は、オフラインの強化学習技術を利用して、事前訓練されたポリシーの効率的なオンライン微調整を確保することである。
提案手法では,既存のロボットデータセットからのデータを組み込んで,目標タスクを3時間以内の自律現実体験で改善することができる。
論文 参考訳(メタデータ) (2023-10-23T17:50:08Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Transformer Inertial Poser: Attention-based Real-time Human Motion
Reconstruction from Sparse IMUs [79.72586714047199]
本研究では,6つのIMUセンサからリアルタイムに全体動作を再構築する,注意に基づく深層学習手法を提案する。
提案手法は, 実装が簡単で, 小型でありながら, 定量的かつ質的に新しい結果が得られる。
論文 参考訳(メタデータ) (2022-03-29T16:24:52Z) - An Adaptable Approach to Learn Realistic Legged Locomotion without
Examples [38.81854337592694]
本研究は,バネ装荷逆振り子モデルを用いて学習プロセスを導くことで,移動における現実性を保証するための汎用的アプローチを提案する。
モデルのない設定であっても、2足歩行ロボットと4足歩行ロボットに対して、学習したポリシーが現実的でエネルギー効率のよい移動歩行を生成できることを示す実験結果を示す。
論文 参考訳(メタデータ) (2021-10-28T10:14:47Z) - Model Predictive Actor-Critic: Accelerating Robot Skill Acquisition with
Deep Reinforcement Learning [42.525696463089794]
Model Predictive Actor-Critic (MoPAC)は、モデル予測ロールアウトとポリシー最適化を組み合わせてモデルバイアスを軽減するハイブリッドモデルベース/モデルフリーメソッドである。
MoPACは最適なスキル学習を近似誤差まで保証し、環境との物理的相互作用を減らす。
論文 参考訳(メタデータ) (2021-03-25T13:50:24Z) - Online Body Schema Adaptation through Cost-Sensitive Active Learning [63.84207660737483]
この作業は、icubロボットシミュレータの7dofアームを使用して、シミュレーション環境で実行された。
コストに敏感な能動学習手法は最適な関節構成を選択するために用いられる。
その結果,コスト依存型能動学習は標準的な能動学習手法と同等の精度を示し,実行運動の約半分を減らした。
論文 参考訳(メタデータ) (2021-01-26T16:01:02Z) - Never Stop Learning: The Effectiveness of Fine-Tuning in Robotic
Reinforcement Learning [109.77163932886413]
本稿では,ロボットによるロボット操作ポリシーを,政治以外の強化学習を通じて微調整することで,新たなバリエーションに適応する方法を示す。
この適応は、タスクをゼロから学習するために必要なデータの0.2%未満を使用する。
事前訓練されたポリシーを適用するという私たちのアプローチは、微調整の過程で大きなパフォーマンス向上につながります。
論文 参考訳(メタデータ) (2020-04-21T17:57:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。