ChatCounselor: A Large Language Models for Mental Health Support
- URL: http://arxiv.org/abs/2309.15461v1
- Date: Wed, 27 Sep 2023 07:57:21 GMT
- Title: ChatCounselor: A Large Language Models for Mental Health Support
- Authors: June M. Liu, Donghao Li, He Cao, Tianhe Ren, Zeyi Liao and Jiamin Wu
- Abstract summary: ChatCounselor is a large language model (LLM) solution designed to provide mental health support.
The training dataset, Psych8k, was constructed from 260 in-depth interviews, each spanning an hour.
ChatCounselor surpasses existing open-source models in the counseling Bench and approaches the performance level of ChatGPT.
- Score: 8.639639227401625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents ChatCounselor, a large language model (LLM) solution
designed to provide mental health support. Unlike generic chatbots,
ChatCounselor is distinguished by its foundation in real conversations between
consulting clients and professional psychologists, enabling it to possess
specialized knowledge and counseling skills in the field of psychology. The
training dataset, Psych8k, was constructed from 260 in-depth interviews, each
spanning an hour. To assess the quality of counseling responses, the counseling
Bench was devised. Leveraging GPT-4 and meticulously crafted prompts based on
seven metrics of psychological counseling assessment, the model underwent
evaluation using a set of real-world counseling questions. Impressively,
ChatCounselor surpasses existing open-source models in the counseling Bench and
approaches the performance level of ChatGPT, showcasing the remarkable
enhancement in model capability attained through high-quality domain-specific
data.
Related papers
- MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders [59.515827458631975]
Mental health disorders are one of the most serious diseases in the world.
Privacy concerns limit the accessibility of personalized treatment data.
MentalArena is a self-play framework to train language models.
arXiv Detail & Related papers (2024-10-09T13:06:40Z) - Enhancing AI-Driven Psychological Consultation: Layered Prompts with Large Language Models [44.99833362998488]
We explore the use of large language models (LLMs) like GPT-4 to augment psychological consultation services.
Our approach introduces a novel layered prompting system that dynamically adapts to user input.
We also develop empathy-driven and scenario-based prompts to enhance the LLM's emotional intelligence.
arXiv Detail & Related papers (2024-08-29T05:47:14Z) - Cactus: Towards Psychological Counseling Conversations using Cognitive Behavioral Theory [24.937025825501998]
We create a multi-turn dialogue dataset that emulates real-life interactions using the goal-oriented and structured approach of Cognitive Behavioral Therapy (CBT)
We benchmark against established psychological criteria used to evaluate real counseling sessions, ensuring alignment with expert evaluations.
Experimental results demonstrate that Camel, a model trained with Cactus, outperforms other models in counseling skills, highlighting its effectiveness and potential as a counseling agent.
arXiv Detail & Related papers (2024-07-03T13:41:31Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
We employ a Large Language Model (LLM) to convert unstructured psychological interviews into structured questionnaires spanning various psychiatric and personality domains.
The obtained answers are coded as features, which are used to predict standardized psychiatric measures of depression (PHQ-8) and PTSD (PCL-C)
arXiv Detail & Related papers (2024-06-09T09:03:11Z) - CPsyCoun: A Report-based Multi-turn Dialogue Reconstruction and Evaluation Framework for Chinese Psychological Counseling [27.193022503592342]
We propose CPsyCoun, a report-based multi-turn dialogue reconstruction and evaluation framework for Chinese psychological counseling.
To fully exploit psychological counseling reports, a two-phase approach is devised to construct high-quality dialogues.
A comprehensive evaluation benchmark is developed for the effective automatic evaluation of multi-turn psychological consultations.
arXiv Detail & Related papers (2024-05-26T05:18:00Z) - VCounselor: A Psychological Intervention Chat Agent Based on a Knowledge-Enhanced Large Language Model [1.0055768887247036]
The main objective of this study is to improve the effectiveness and credibility of the large language model in psychological intervention.
We achieved this goal by proposing a new affective interaction structure and knowledge-enhancement structure.
The comparison results indicated that the affective interaction structure and knowledge-enhancement structure of VCounselor significantly improved the effectiveness and credibility of the psychological intervention.
arXiv Detail & Related papers (2024-03-20T12:46:02Z) - Can Large Language Models be Used to Provide Psychological Counselling?
An Analysis of GPT-4-Generated Responses Using Role-play Dialogues [0.0]
Mental health care poses an increasingly serious challenge to modern societies.
This study collected counseling dialogue data via role-playing scenarios involving expert counselors.
Third-party counselors evaluated the appropriateness of responses from human counselors and those generated by GPT-4 in identical contexts.
arXiv Detail & Related papers (2024-02-20T06:05:36Z) - PsychoGAT: A Novel Psychological Measurement Paradigm through Interactive Fiction Games with LLM Agents [68.50571379012621]
Psychological measurement is essential for mental health, self-understanding, and personal development.
PsychoGAT (Psychological Game AgenTs) achieves statistically significant excellence in psychometric metrics such as reliability, convergent validity, and discriminant validity.
arXiv Detail & Related papers (2024-02-19T18:00:30Z) - K-ESConv: Knowledge Injection for Emotional Support Dialogue Systems via
Prompt Learning [83.19215082550163]
We propose K-ESConv, a novel prompt learning based knowledge injection method for emotional support dialogue system.
We evaluate our model on an emotional support dataset ESConv, where the model retrieves and incorporates knowledge from external professional emotional Q&A forum.
arXiv Detail & Related papers (2023-12-16T08:10:10Z) - Modeling Motivational Interviewing Strategies On An Online Peer-to-Peer
Counseling Platform [35.9642101732025]
This paper seeks to bridge the gap by mapping peer-counselor chat-messages to motivational interviewing techniques.
We study the impact of MI techniques on the conversation ratings to investigate the techniques that predict clients' satisfaction with their counseling sessions.
This work provides a deeper understanding of the use of motivational interviewing techniques on peer-to-peer counselor platforms.
arXiv Detail & Related papers (2022-11-09T20:25:33Z) - Towards Emotional Support Dialog Systems [61.58828606097423]
We define the Emotional Support Conversation task and propose an ESC Framework, which is grounded on the Helping Skills Theory.
We construct an Emotion Support Conversation dataset (ESConv) with rich annotation (especially support strategy) in a help-seeker and supporter mode.
We evaluate state-of-the-art dialog models with respect to the ability to provide emotional support.
arXiv Detail & Related papers (2021-06-02T13:30:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.