Integrating LLM, EEG, and Eye-Tracking Biomarker Analysis for Word-Level
Neural State Classification in Semantic Inference Reading Comprehension
- URL: http://arxiv.org/abs/2309.15714v2
- Date: Tue, 17 Oct 2023 17:17:59 GMT
- Title: Integrating LLM, EEG, and Eye-Tracking Biomarker Analysis for Word-Level
Neural State Classification in Semantic Inference Reading Comprehension
- Authors: Yuhong Zhang, Qin Li, Sujal Nahata, Tasnia Jamal, Shih-kuen Cheng,
Gert Cauwenberghs, Tzyy-Ping Jung
- Abstract summary: This study aims to provide insights into individuals' neural states during a semantic relation reading-comprehension task.
We propose jointly analyzing LLMs, eye-gaze, and electroencephalographic (EEG) data to study how the brain processes words with varying degrees of relevance to a keyword during reading.
- Score: 4.390968520425543
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the recent proliferation of large language models (LLMs), such as
Generative Pre-trained Transformers (GPT), there has been a significant shift
in exploring human and machine comprehension of semantic language meaning. This
shift calls for interdisciplinary research that bridges cognitive science and
natural language processing (NLP). This pilot study aims to provide insights
into individuals' neural states during a semantic relation
reading-comprehension task. We propose jointly analyzing LLMs, eye-gaze, and
electroencephalographic (EEG) data to study how the brain processes words with
varying degrees of relevance to a keyword during reading. We also use a feature
engineering approach to improve the fixation-related EEG data classification
while participants read words with high versus low relevance to the keyword.
The best validation accuracy in this word-level classification is over 60\%
across 12 subjects. Words of high relevance to the inference keyword had
significantly more eye fixations per word: 1.0584 compared to 0.6576 when
excluding no-fixation words, and 1.5126 compared to 1.4026 when including them.
This study represents the first attempt to classify brain states at a word
level using LLM knowledge. It provides valuable insights into human cognitive
abilities and the realm of Artificial General Intelligence (AGI), and offers
guidance for developing potential reading-assisted technologies.
Related papers
- Can large language models understand uncommon meanings of common words? [30.527834781076546]
Large language models (LLMs) have shown significant advancements across diverse natural language understanding (NLU) tasks.
Yet, lacking widely acknowledged testing mechanisms, answering whether LLMs are parrots or genuinely comprehend the world' remains unclear.
This paper presents innovative construction of a Lexical Semantic dataset with novel evaluation metrics.
arXiv Detail & Related papers (2024-05-09T12:58:22Z) - A Survey on Lexical Ambiguity Detection and Word Sense Disambiguation [0.0]
This paper explores techniques that focus on understanding and resolving ambiguity in language within the field of natural language processing (NLP)
It outlines diverse approaches ranging from deep learning techniques to leveraging lexical resources and knowledge graphs like WordNet.
The research identifies persistent challenges in the field, such as the scarcity of sense annotated corpora and the complexity of informal clinical texts.
arXiv Detail & Related papers (2024-03-24T12:58:48Z) - Code-Switching with Word Senses for Pretraining in Neural Machine
Translation [107.23743153715799]
We introduce Word Sense Pretraining for Neural Machine Translation (WSP-NMT)
WSP-NMT is an end-to-end approach for pretraining multilingual NMT models leveraging word sense-specific information from Knowledge Bases.
Our experiments show significant improvements in overall translation quality.
arXiv Detail & Related papers (2023-10-21T16:13:01Z) - BELT:Bootstrapping Electroencephalography-to-Language Decoding and
Zero-Shot Sentiment Classification by Natural Language Supervision [31.382825932199935]
The proposed BELT method is a generic and efficient framework that bootstraps EEG representation learning.
With a large LM's capacity for understanding semantic information and zero-shot generalization, BELT utilizes large LMs trained on Internet-scale datasets.
We achieve state-of-the-art results on two featuring brain decoding tasks including the brain-to-language translation and zero-shot sentiment classification.
arXiv Detail & Related papers (2023-09-21T13:24:01Z) - Information-Restricted Neural Language Models Reveal Different Brain
Regions' Sensitivity to Semantics, Syntax and Context [87.31930367845125]
We trained a lexical language model, Glove, and a supra-lexical language model, GPT-2, on a text corpus.
We then assessed to what extent these information-restricted models were able to predict the time-courses of fMRI signal of humans listening to naturalistic text.
Our analyses show that, while most brain regions involved in language are sensitive to both syntactic and semantic variables, the relative magnitudes of these effects vary a lot across these regions.
arXiv Detail & Related papers (2023-02-28T08:16:18Z) - Representing Affect Information in Word Embeddings [5.378735006566249]
We investigated whether and how the affect meaning of a word is encoded in word embeddings pre-trained in large neural networks.
The embeddings varied in being static or contextualized, and how much affect specific information was prioritized during the pre-training and fine-tuning phase.
arXiv Detail & Related papers (2022-09-21T18:16:33Z) - Unsupervised Multimodal Word Discovery based on Double Articulation
Analysis with Co-occurrence cues [7.332652485849632]
Human infants acquire their verbal lexicon with minimal prior knowledge of language.
This study proposes a novel fully unsupervised learning method for discovering speech units.
The proposed method can acquire words and phonemes from speech signals using unsupervised learning.
arXiv Detail & Related papers (2022-01-18T07:31:59Z) - Open Vocabulary Electroencephalography-To-Text Decoding and Zero-shot
Sentiment Classification [78.120927891455]
State-of-the-art brain-to-text systems have achieved great success in decoding language directly from brain signals using neural networks.
In this paper, we extend the problem to open vocabulary Electroencephalography(EEG)-To-Text Sequence-To-Sequence decoding and zero-shot sentence sentiment classification on natural reading tasks.
Our model achieves a 40.1% BLEU-1 score on EEG-To-Text decoding and a 55.6% F1 score on zero-shot EEG-based ternary sentiment classification, which significantly outperforms supervised baselines.
arXiv Detail & Related papers (2021-12-05T21:57:22Z) - Model-based analysis of brain activity reveals the hierarchy of language
in 305 subjects [82.81964713263483]
A popular approach to decompose the neural bases of language consists in correlating, across individuals, the brain responses to different stimuli.
Here, we show that a model-based approach can reach equivalent results within subjects exposed to natural stimuli.
arXiv Detail & Related papers (2021-10-12T15:30:21Z) - CogAlign: Learning to Align Textual Neural Representations to Cognitive
Language Processing Signals [60.921888445317705]
We propose a CogAlign approach to integrate cognitive language processing signals into natural language processing models.
We show that CogAlign achieves significant improvements with multiple cognitive features over state-of-the-art models on public datasets.
arXiv Detail & Related papers (2021-06-10T07:10:25Z) - ERICA: Improving Entity and Relation Understanding for Pre-trained
Language Models via Contrastive Learning [97.10875695679499]
We propose a novel contrastive learning framework named ERICA in pre-training phase to obtain a deeper understanding of the entities and their relations in text.
Experimental results demonstrate that our proposed ERICA framework achieves consistent improvements on several document-level language understanding tasks.
arXiv Detail & Related papers (2020-12-30T03:35:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.