Graph Representations for Reading Comprehension Analysis using Large Language Model and Eye-Tracking Biomarker
- URL: http://arxiv.org/abs/2507.11972v1
- Date: Wed, 16 Jul 2025 07:15:59 GMT
- Title: Graph Representations for Reading Comprehension Analysis using Large Language Model and Eye-Tracking Biomarker
- Authors: Yuhong Zhang, Jialu Li, Shilai Yang, Yuchen Xu, Gert Cauwenberghs, Tzyy-Ping Jung,
- Abstract summary: Reading comprehension is a fundamental skill in human cognitive development.<n>There is a growing need to compare how humans and Large Language Models (LLMs) understand language across different contexts.
- Score: 9.284765805642326
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reading comprehension is a fundamental skill in human cognitive development. With the advancement of Large Language Models (LLMs), there is a growing need to compare how humans and LLMs understand language across different contexts and apply this understanding to functional tasks such as inference, emotion interpretation, and information retrieval. Our previous work used LLMs and human biomarkers to study the reading comprehension process. The results showed that the biomarkers corresponding to words with high and low relevance to the inference target, as labeled by the LLMs, exhibited distinct patterns, particularly when validated using eye-tracking data. However, focusing solely on individual words limited the depth of understanding, which made the conclusions somewhat simplistic despite their potential significance. This study used an LLM-based AI agent to group words from a reading passage into nodes and edges, forming a graph-based text representation based on semantic meaning and question-oriented prompts. We then compare the distribution of eye fixations on important nodes and edges. Our findings indicate that LLMs exhibit high consistency in language understanding at the level of graph topological structure. These results build on our previous findings and offer insights into effective human-AI co-learning strategies.
Related papers
- Semantic Mastery: Enhancing LLMs with Advanced Natural Language Understanding [0.0]
The paper discusses state-of-the-art methodologies that advance large language models (LLMs) with more advanced NLU techniques.<n>We analyze the use of structured knowledge graphs, retrieval-augmented generation (RAG), and fine-tuning strategies that match models with human-level understanding.
arXiv Detail & Related papers (2025-04-01T04:12:04Z) - Unveiling Visual Perception in Language Models: An Attention Head Analysis Approach [33.20992355312175]
Recent advancements in Multimodal Large Language Models (MLLMs) have demonstrated remarkable progress in visual understanding.<n>This paper aims to address this question with systematic investigation across 4 model families and 4 model scales.<n>Our analysis reveals a strong correlation between the behavior of these attention heads, the distribution of attention weights, and their concentration on visual tokens within the input.
arXiv Detail & Related papers (2024-12-24T02:31:24Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
This work introduces a benchmark to assess large language models' capabilities in graph pattern tasks.<n>We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions.<n>Our benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models.
arXiv Detail & Related papers (2024-10-04T04:48:33Z) - Traffic Light or Light Traffic? Investigating Phrasal Semantics in Large Language Models [41.233879429714925]
This study critically examines the capacity of API-based large language models to comprehend phrase semantics.
We assess the performance of LLMs in executing phrase semantic reasoning tasks guided by natural language instructions.
We conduct detailed error analyses to interpret the limitations faced by LLMs in comprehending phrase semantics.
arXiv Detail & Related papers (2024-10-03T08:44:17Z) - Revisiting the Graph Reasoning Ability of Large Language Models: Case Studies in Translation, Connectivity and Shortest Path [53.71787069694794]
We focus on the graph reasoning ability of Large Language Models (LLMs)<n>We revisit the ability of LLMs on three fundamental graph tasks: graph description translation, graph connectivity, and the shortest-path problem.<n>Our findings suggest that LLMs can fail to understand graph structures through text descriptions and exhibit varying performance for all these fundamental tasks.
arXiv Detail & Related papers (2024-08-18T16:26:39Z) - Hierarchical Text-to-Vision Self Supervised Alignment for Improved Histopathology Representation Learning [64.1316997189396]
We present a novel language-tied self-supervised learning framework, Hierarchical Language-tied Self-Supervision (HLSS) for histopathology images.
Our resulting model achieves state-of-the-art performance on two medical imaging benchmarks, OpenSRH and TCGA datasets.
arXiv Detail & Related papers (2024-03-21T17:58:56Z) - Identifying Semantic Induction Heads to Understand In-Context Learning [103.00463655766066]
We investigate whether attention heads encode two types of relationships between tokens present in natural languages.
We find that certain attention heads exhibit a pattern where, when attending to head tokens, they recall tail tokens and increase the output logits of those tail tokens.
arXiv Detail & Related papers (2024-02-20T14:43:39Z) - CoVLM: Composing Visual Entities and Relationships in Large Language
Models Via Communicative Decoding [66.52659447360104]
CoVLM can guide the LLM to explicitly compose visual entities and relationships among the text.
We propose CoVLM, which can guide the LLM to explicitly compose visual entities and relationships among the text.
arXiv Detail & Related papers (2023-11-06T18:59:44Z) - Visual Grounding Helps Learn Word Meanings in Low-Data Regimes [47.7950860342515]
Modern neural language models (LMs) are powerful tools for modeling human sentence production and comprehension.
But to achieve these results, LMs must be trained in distinctly un-human-like ways.
Do models trained more naturalistically -- with grounded supervision -- exhibit more humanlike language learning?
We investigate this question in the context of word learning, a key sub-task in language acquisition.
arXiv Detail & Related papers (2023-10-20T03:33:36Z) - Integrating LLM, EEG, and Eye-Tracking Biomarker Analysis for Word-Level
Neural State Classification in Semantic Inference Reading Comprehension [4.390968520425543]
This study aims to provide insights into individuals' neural states during a semantic relation reading-comprehension task.
We propose jointly analyzing LLMs, eye-gaze, and electroencephalographic (EEG) data to study how the brain processes words with varying degrees of relevance to a keyword during reading.
arXiv Detail & Related papers (2023-09-27T15:12:08Z) - ERICA: Improving Entity and Relation Understanding for Pre-trained
Language Models via Contrastive Learning [97.10875695679499]
We propose a novel contrastive learning framework named ERICA in pre-training phase to obtain a deeper understanding of the entities and their relations in text.
Experimental results demonstrate that our proposed ERICA framework achieves consistent improvements on several document-level language understanding tasks.
arXiv Detail & Related papers (2020-12-30T03:35:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.