論文の概要: Where Are We So Far? Understanding Data Storytelling Tools from the Perspective of Human-AI Collaboration
- arxiv url: http://arxiv.org/abs/2309.15723v2
- Date: Mon, 18 Mar 2024 13:00:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 00:40:38.408581
- Title: Where Are We So Far? Understanding Data Storytelling Tools from the Perspective of Human-AI Collaboration
- Title(参考訳): どこまで行くのか?人間とAIのコラボレーションから見たデータストーリーテリングツールを理解する
- Authors: Haotian Li, Yun Wang, Huamin Qu,
- Abstract要約: 最近の研究は、人工知能がデータストーリーテリングにおいて人間を支援し、強化する可能性を探っている。
人とAIのコラボレーションの観点から、データストーリーテリングツールを理解するための体系的なレビューがない。
本稿では,分析,計画,実装,コミュニケーションなどのツールが機能するストーリーテリングワークフローの段階と,人間とAIの役割という2つの視点から,既存のツールをフレームワークで検討した。
- 参考スコア(独自算出の注目度): 39.96202614397779
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data storytelling is powerful for communicating data insights, but it requires diverse skills and considerable effort from human creators. Recent research has widely explored the potential for artificial intelligence (AI) to support and augment humans in data storytelling. However, there lacks a systematic review to understand data storytelling tools from the perspective of human-AI collaboration, which hinders researchers from reflecting on the existing collaborative tool designs that promote humans' and AI's advantages and mitigate their shortcomings. This paper investigated existing tools with a framework from two perspectives: the stages in the storytelling workflow where a tool serves, including analysis, planning, implementation, and communication, and the roles of humans and AI in each stage, such as creators, assistants, optimizers, and reviewers. Through our analysis, we recognize the common collaboration patterns in existing tools, summarize lessons learned from these patterns, and further illustrate research opportunities for human-AI collaboration in data storytelling.
- Abstract(参考訳): データストーリーテリングは、データの洞察を伝えるのに強力ですが、多様なスキルと人間の創造者によるかなりの努力が必要です。
近年の研究では、人工知能(AI)がデータストーリーテリングにおいて人間を支援し、強化する可能性について広く研究されている。
しかし、人間とAIのコラボレーションの観点からデータストーリーテリングツールを理解するための体系的なレビューがないため、研究者は人間の利点とAIの利点を促進し、その欠点を緩和する既存のコラボレーションツール設計を反映することを妨げている。
本稿では, ストーリーテリング・ワークフローの段階, 分析, 計画, 実装, コミュニケーション, クリエータ, アシスタント, オプティマイザ, レビュアーなど, それぞれの段階における人間とAIの役割について検討した。
分析を通じて,既存のツールの共通的なコラボレーションパターンを認識し,これらのパターンから学んだ教訓を要約し,データストーリーテリングにおける人間とAIのコラボレーション研究の機会について説明する。
関連論文リスト
- Unexploited Information Value in Human-AI Collaboration [23.353778024330165]
ヒューマンAIチームのパフォーマンスを改善する方法は、各エージェントがどのような情報や戦略を採用しているかを知らなければ、しばしば明確ではない。
本稿では,人間とAIの協調関係を分析するための統計的決定理論に基づくモデルを提案する。
論文 参考訳(メタデータ) (2024-11-03T01:34:45Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - Human-Modeling in Sequential Decision-Making: An Analysis through the Lens of Human-Aware AI [20.21053807133341]
私たちは、人間を意識したAIシステムを構成するものの説明を提供しようとしています。
人間を意識したAIはデザイン指向のパラダイムであり、人間と対話するかもしれないモデリングの必要性に焦点を当てている。
論文 参考訳(メタデータ) (2024-05-13T14:17:52Z) - Can AI Serve as a Substitute for Human Subjects in Software Engineering
Research? [24.39463126056733]
本稿では,人工知能(AI)の能力を活用したソフトウェア工学研究における定性データ収集手法を提案する。
定性的データの代替源としてAI生成合成テキストの可能性を探る。
観察研究とユーザ評価における人間の行動のエミュレートを目的とした新しい基礎モデルの開発について論じる。
論文 参考訳(メタデータ) (2023-11-18T14:05:52Z) - Why is AI not a Panacea for Data Workers? An Interview Study on Human-AI
Collaboration in Data Storytelling [59.08591308749448]
業界と学界の18人のデータワーカーにインタビューして、AIとのコラボレーションの場所と方法を聞いた。
驚いたことに、参加者はAIとのコラボレーションに興奮を見せたが、彼らの多くは反感を表明し、曖昧な理由を指摘した。
論文 参考訳(メタデータ) (2023-04-17T15:30:05Z) - Data-centric Artificial Intelligence: A Survey [47.24049907785989]
近年、AIにおけるデータの役割は大幅に拡大し、データ中心AIという新たな概念が生まれた。
本稿では,データ中心型AIの必要性について論じ,続いて3つの一般的なデータ中心型目標の全体像を考察する。
これは、データライフサイクルのさまざまな段階にわたるタスクのグローバルなビューを提供する、初めての総合的な調査である、と私たちは信じています。
論文 参考訳(メタデータ) (2023-03-17T17:44:56Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z) - Learning to Complement Humans [67.38348247794949]
オープンワールドにおけるAIに対するビジョンの高まりは、知覚、診断、推論タスクのために人間を補完できるシステムの開発に焦点を当てている。
我々は,人間-機械チームの複合的なパフォーマンスを最適化するために,エンド・ツー・エンドの学習戦略をどのように活用できるかを実証する。
論文 参考訳(メタデータ) (2020-05-01T20:00:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。