論文の概要: Reflection on Data Storytelling Tools in the Generative AI Era from the Human-AI Collaboration Perspective
- arxiv url: http://arxiv.org/abs/2503.02631v1
- Date: Tue, 04 Mar 2025 13:56:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:15:49.610364
- Title: Reflection on Data Storytelling Tools in the Generative AI Era from the Human-AI Collaboration Perspective
- Title(参考訳): 人間とAIのコラボレーションから見た生成AI時代のデータストーリーテリングツールの考察
- Authors: Haotian Li, Yun Wang, Huamin Qu,
- Abstract要約: 大規模生成AI技術は、ビジュアルおよびナレーション生成におけるそのパワーでデータストーリーテリングを強化する可能性がある。
我々は、最新のツールのコラボレーションパターンを、データストーリーテリングにおける人間とAIのコラボレーションを理解するための専用のフレームワークを使用して、以前のツールのパターンと比較する。
これらのAIテクニックのメリットや、人間とAIのコラボレーションに対するその他の影響も明らかにされている。
- 参考スコア(独自算出の注目度): 39.96202614397779
- License:
- Abstract: Human-AI collaborative tools attract attentions from the data storytelling community to lower the barrier of expertise and streamline the workflow. The recent advance in large-scale generative AI techniques, e.g., large language models (LLMs) and text-to-image models, has the potential to enhance data storytelling with their power in visual and narration generation. After two years since these techniques were publicly available, it is important to reflect our progress of applying them and have an outlook for future opportunities. To achieve the goal, we compare the collaboration patterns of the latest tools with those of earlier ones using a dedicated framework for understanding human-AI collaboration in data storytelling. Through comparison, we identify persistent collaboration patterns, e.g., human-creator + AI-assistant, and emerging ones, e.g., AI-creator + human-reviewer. The benefits of these AI techniques and other implications to human-AI collaboration are also revealed. We further propose future directions to hopefully ignite innovations.
- Abstract(参考訳): ヒューマンAIコラボレーションツールは、専門知識の障壁を低くし、ワークフローを合理化するために、データストーリーテリングコミュニティから注目を集めている。
大規模生成AI技術(例えば、大規模言語モデル(LLM)やテキスト・ツー・イメージモデル)の最近の進歩は、ビジュアルおよびナレーション生成におけるそのパワーでデータストーリーテリングを強化する可能性がある。
これらの技術が公開されてから2年が経過した今,適用の進展を反映し,今後の可能性を見極めることが重要である。
目標を達成するために、私たちは、データストーリーテリングにおける人間とAIのコラボレーションを理解するための専用のフレームワークを使用して、最新のツールのコラボレーションパターンと以前のツールのパターンを比較します。
比較を通じて、永続的なコラボレーションパターン、例えば、ヒューマン・クリエータ+AI・アシスト、そして新しいもの、例えば、AI・クリエータ+ヒューマン・リビューアを識別する。
これらのAIテクニックのメリットや、人間とAIのコラボレーションに対するその他の影響も明らかにされている。
今後,イノベーションの発火を期待する方向も提案する。
関連論文リスト
- Explainable Human-AI Interaction: A Planning Perspective [32.477369282996385]
AIシステムは、ループ内の人間に説明可能である必要がある。
我々は、AIエージェントがメンタルモデルを使用して人間の期待に沿うか、あるいは説明的コミュニケーションを通じて期待を変更する方法について論じる。
本書の主な焦点は、協調的なシナリオであるが、同じ精神モデルが難読化や偽造にどのように使用できるかを指摘したい。
論文 参考訳(メタデータ) (2024-05-19T22:22:21Z) - Now, Later, and Lasting: Ten Priorities for AI Research, Policy, and Practice [63.20307830884542]
今後数十年は、産業革命に匹敵する人類の転換点になるかもしれない。
10年前に立ち上げられたこのプロジェクトは、複数の専門分野の専門家による永続的な研究にコミットしている。
AI技術の短期的および長期的影響の両方に対処する、アクションのための10のレコメンデーションを提供します。
論文 参考訳(メタデータ) (2024-04-06T22:18:31Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
生成AIは、現実世界の写真によく似た合成画像を作成する可能性を解き放った。
本稿では、これらのAI生成画像を新しいデータソースとして活用するという革新的な概念を探求する。
実際のデータとは対照的に、AI生成データには、未整合のアブリダンスやスケーラビリティなど、大きなメリットがある。
論文 参考訳(メタデータ) (2023-10-03T06:55:19Z) - Where Are We So Far? Understanding Data Storytelling Tools from the Perspective of Human-AI Collaboration [39.96202614397779]
最近の研究は、人工知能がデータストーリーテリングにおいて人間を支援し、強化する可能性を探っている。
人とAIのコラボレーションの観点から、データストーリーテリングツールを理解するための体系的なレビューがない。
本稿では,分析,計画,実装,コミュニケーションなどのツールが機能するストーリーテリングワークフローの段階と,人間とAIの役割という2つの視点から,既存のツールをフレームワークで検討した。
論文 参考訳(メタデータ) (2023-09-27T15:30:50Z) - Human in the AI loop via xAI and Active Learning for Visual Inspection [2.261815118231329]
産業革命は生産に自動化を導入することで製造業をディスラプトした。
ロボット工学と人工知能の進歩は、人間と機械のコラボレーションの新たなフロンティアを開く。
本研究はまず,産業5.0,人間と機械のコラボレーション,品質検査に関する最先端技術について述べる。
論文 参考訳(メタデータ) (2023-07-03T17:23:23Z) - Why is AI not a Panacea for Data Workers? An Interview Study on Human-AI
Collaboration in Data Storytelling [59.08591308749448]
業界と学界の18人のデータワーカーにインタビューして、AIとのコラボレーションの場所と方法を聞いた。
驚いたことに、参加者はAIとのコラボレーションに興奮を見せたが、彼らの多くは反感を表明し、曖昧な理由を指摘した。
論文 参考訳(メタデータ) (2023-04-17T15:30:05Z) - A Comprehensive Survey of AI-Generated Content (AIGC): A History of
Generative AI from GAN to ChatGPT [63.58711128819828]
ChatGPTおよびその他の生成AI(GAI)技術は、人工知能生成コンテンツ(AIGC)のカテゴリに属している。
AIGCの目標は、コンテンツ作成プロセスをより効率的かつアクセスしやすくし、高品質なコンテンツをより高速に生産できるようにすることである。
論文 参考訳(メタデータ) (2023-03-07T20:36:13Z) - Human in the Loop for Machine Creativity [0.0]
我々は、創造的アプリケーションのための既存のHuman-in-the-loop(HITL)アプローチを概念化する。
モデル,インターフェース,機械の創造性に対する長期的影響について検討し,考察する。
テキスト,視覚,音,その他の情報を結合し,人や環境の自動解析を行うマルチモーダルHITLプロセスを提案する。
論文 参考訳(メタデータ) (2021-10-07T15:42:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。