論文の概要: Identifying the Risks of LM Agents with an LM-Emulated Sandbox
- arxiv url: http://arxiv.org/abs/2309.15817v2
- Date: Fri, 17 May 2024 17:17:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-20 20:33:24.076616
- Title: Identifying the Risks of LM Agents with an LM-Emulated Sandbox
- Title(参考訳): LM-Emulated Sandbox を用いた LM エージェントの危険性の同定
- Authors: Yangjun Ruan, Honghua Dong, Andrew Wang, Silviu Pitis, Yongchao Zhou, Jimmy Ba, Yann Dubois, Chris J. Maddison, Tatsunori Hashimoto,
- Abstract要約: 言語モデル(LM)エージェントとツールは、豊富な機能セットを可能にすると同時に、潜在的なリスクを増幅する。
これらのエージェントを高いコストでテストすることは、高いリスクと長い尾のリスクを見つけるのをますます困難にします。
ツール実行をエミュレートするためにLMを使用し、さまざまなツールやシナリオに対してLMエージェントのテストを可能にするフレームワークであるToolEmuを紹介します。
- 参考スコア(独自算出の注目度): 68.26587052548287
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in Language Model (LM) agents and tool use, exemplified by applications like ChatGPT Plugins, enable a rich set of capabilities but also amplify potential risks - such as leaking private data or causing financial losses. Identifying these risks is labor-intensive, necessitating implementing the tools, setting up the environment for each test scenario manually, and finding risky cases. As tools and agents become more complex, the high cost of testing these agents will make it increasingly difficult to find high-stakes, long-tailed risks. To address these challenges, we introduce ToolEmu: a framework that uses an LM to emulate tool execution and enables the testing of LM agents against a diverse range of tools and scenarios, without manual instantiation. Alongside the emulator, we develop an LM-based automatic safety evaluator that examines agent failures and quantifies associated risks. We test both the tool emulator and evaluator through human evaluation and find that 68.8% of failures identified with ToolEmu would be valid real-world agent failures. Using our curated initial benchmark consisting of 36 high-stakes tools and 144 test cases, we provide a quantitative risk analysis of current LM agents and identify numerous failures with potentially severe outcomes. Notably, even the safest LM agent exhibits such failures 23.9% of the time according to our evaluator, underscoring the need to develop safer LM agents for real-world deployment.
- Abstract(参考訳): 言語モデル(LM)エージェントとツールの使用の最近の進歩は、ChatGPTプラグインのようなアプリケーションによって実証されている。
これらのリスクの特定は労働集約的であり、ツールの実装を必要とし、テストシナリオごとに環境を手動で設定し、リスクのあるケースを見つける。
ツールやエージェントの複雑さが増すにつれ、これらのエージェントをテストするコストが高くなると、高いリスクや長期的リスクを見つけるのがますます難しくなります。
ツール実行をエミュレートするためにLMを使用するフレームワークであるToolEmuを導入し、手動でインスタンス化することなく、さまざまなツールやシナリオに対してLMエージェントのテストを可能にする。
エミュレータとともに,エージェントの故障を調査し,関連するリスクを定量化するLMベースの自動安全評価器を開発した。
ツールエミュレータと評価器の両方を人体評価によりテストし,ToolEmuで特定されたエラーの68.8%が実世界のエージェントの失敗であることを確認した。
36個のハイテイクツールと144個のテストケースからなるキュレートされた初期ベンチマークを用いて、現在のLMエージェントの定量的リスク分析を行い、潜在的に深刻な結果をもたらす可能性のある多数の障害を同定する。
特に、最も安全なLMエージェントでさえ23.9%の時間障害を示しており、より安全なLMエージェントの開発の必要性を強調している。
関連論文リスト
- Navigating the Risks: A Survey of Security, Privacy, and Ethics Threats in LLM-Based Agents [67.07177243654485]
この調査は、大規模言語モデルに基づくエージェントが直面するさまざまな脅威を収集、分析する。
LLMをベースとしたエージェントの6つの重要な特徴を概説する。
4つの代表エージェントをケーススタディとして選択し,実践的に直面する可能性のあるリスクを分析した。
論文 参考訳(メタデータ) (2024-11-14T15:40:04Z) - PentestAgent: Incorporating LLM Agents to Automated Penetration Testing [6.815381197173165]
手動浸透試験は時間と費用がかかる。
大規模言語モデル(LLM)の最近の進歩は、浸透テストを強化する新たな機会を提供する。
我々は,新しいLLMベースの自動浸透試験フレームワークであるPentestAgentを提案する。
論文 参考訳(メタデータ) (2024-11-07T21:10:39Z) - AutoPT: How Far Are We from the End2End Automated Web Penetration Testing? [54.65079443902714]
LLMによって駆動されるPSMの原理に基づく自動浸透試験エージェントであるAutoPTを紹介する。
以上の結果から, AutoPT は GPT-4o ミニモデル上でのベースラインフレームワーク ReAct よりも優れていた。
論文 参考訳(メタデータ) (2024-11-02T13:24:30Z) - SafeBench: A Safety Evaluation Framework for Multimodal Large Language Models [75.67623347512368]
MLLMの安全性評価を行うための総合的なフレームワークであるツールンを提案する。
我々のフレームワークは、包括的な有害なクエリデータセットと自動評価プロトコルで構成されています。
本研究では,広く利用されている15のオープンソースMLLMと6つの商用MLLMの大規模実験を行った。
論文 参考訳(メタデータ) (2024-10-24T17:14:40Z) - AgentHarm: A Benchmark for Measuring Harmfulness of LLM Agents [84.96249955105777]
LLMエージェントは誤用された場合、より大きなリスクを引き起こすが、その堅牢性は未発見のままである。
我々は, LLMエージェント誤用の研究を容易にするために, AgentHarmと呼ばれる新しいベンチマークを提案する。
主要なLLMは、ジェイルブレイクなしで悪意のあるエージェント要求に驚くほど準拠している。
論文 参考訳(メタデータ) (2024-10-11T17:39:22Z) - Breaking Agents: Compromising Autonomous LLM Agents Through Malfunction Amplification [35.16099878559559]
大規模言語モデル(LLM)は大きな発展を遂げ、現実世界のアプリケーションにデプロイされている。
エージェントが繰り返しまたは無関係なアクションを実行することを誤解させることで誤動作を引き起こす新しいタイプの攻撃を導入する。
実験の結果、これらの攻撃は複数のシナリオで80%以上の障害率を誘導できることがわかった。
論文 参考訳(メタデータ) (2024-07-30T14:35:31Z) - ALI-Agent: Assessing LLMs' Alignment with Human Values via Agent-based Evaluation [48.54271457765236]
大規模言語モデル(LLM)は、人間の価値観と不一致した場合、意図しない、有害なコンテンツも引き出すことができる。
現在の評価ベンチマークでは、LLMが人的価値とどの程度うまく一致しているかを評価するために、専門家が設計した文脈シナリオが採用されている。
本研究では, LLM エージェントの自律的能力を活用し, 奥行き及び適応的アライメント評価を行う評価フレームワーク ALI-Agent を提案する。
論文 参考訳(メタデータ) (2024-05-23T02:57:42Z) - You Don't Need Robust Machine Learning to Manage Adversarial Attack
Risks [31.111554739533663]
機械学習モデルを不規則な予測に変換する能力は驚くべきものだ。
現行の緩和には高いコストが伴い、同時にモデルの精度が低下する。
これは、実際にこれらの攻撃を緩和する方法、運用デプロイメントのリスク、そしてそれらのリスクをどのように管理するか、という視点で行われます。
論文 参考訳(メタデータ) (2023-06-16T16:32:27Z) - Large Language Models for Code: Security Hardening and Adversarial Testing [6.19238492410992]
大規模な言語モデル(大規模なLM)は、大規模なベクトルで訓練され、コードを生成するのに使われている。
本研究は, (i) セキュアコード生成におけるLMの信頼性向上を目的としたセキュリティ強化, (ii) 敵検定, (ii) 敵検定, 敵検定の2つの重要な軸に沿ったLMのセキュリティについて検討する。
論文 参考訳(メタデータ) (2023-02-10T15:28:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。