論文の概要: SafeBench: A Safety Evaluation Framework for Multimodal Large Language Models
- arxiv url: http://arxiv.org/abs/2410.18927v1
- Date: Thu, 24 Oct 2024 17:14:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:48:18.204337
- Title: SafeBench: A Safety Evaluation Framework for Multimodal Large Language Models
- Title(参考訳): SafeBench: マルチモーダル大規模言語モデルの安全性評価フレームワーク
- Authors: Zonghao Ying, Aishan Liu, Siyuan Liang, Lei Huang, Jinyang Guo, Wenbo Zhou, Xianglong Liu, Dacheng Tao,
- Abstract要約: MLLMの安全性評価を行うための総合的なフレームワークであるツールンを提案する。
我々のフレームワークは、包括的な有害なクエリデータセットと自動評価プロトコルで構成されています。
本研究では,広く利用されている15のオープンソースMLLMと6つの商用MLLMの大規模実験を行った。
- 参考スコア(独自算出の注目度): 75.67623347512368
- License:
- Abstract: Multimodal Large Language Models (MLLMs) are showing strong safety concerns (e.g., generating harmful outputs for users), which motivates the development of safety evaluation benchmarks. However, we observe that existing safety benchmarks for MLLMs show limitations in query quality and evaluation reliability limiting the detection of model safety implications as MLLMs continue to evolve. In this paper, we propose \toolns, a comprehensive framework designed for conducting safety evaluations of MLLMs. Our framework consists of a comprehensive harmful query dataset and an automated evaluation protocol that aims to address the above limitations, respectively. We first design an automatic safety dataset generation pipeline, where we employ a set of LLM judges to recognize and categorize the risk scenarios that are most harmful and diverse for MLLMs; based on the taxonomy, we further ask these judges to generate high-quality harmful queries accordingly resulting in 23 risk scenarios with 2,300 multi-modal harmful query pairs. During safety evaluation, we draw inspiration from the jury system in judicial proceedings and pioneer the jury deliberation evaluation protocol that adopts collaborative LLMs to evaluate whether target models exhibit specific harmful behaviors, providing a reliable and unbiased assessment of content security risks. In addition, our benchmark can also be extended to the audio modality showing high scalability and potential. Based on our framework, we conducted large-scale experiments on 15 widely-used open-source MLLMs and 6 commercial MLLMs (e.g., GPT-4o, Gemini), where we revealed widespread safety issues in existing MLLMs and instantiated several insights on MLLM safety performance such as image quality and parameter size.
- Abstract(参考訳): MLLM(Multimodal Large Language Models)は,安全性評価ベンチマークの開発を動機とする,強力な安全性上の懸念(ユーザにとって有害なアウトプットの生成など)を示している。
しかし,既存のMLLMの安全性ベンチマークでは,クエリ品質の限界や,MLLMの進化に伴ってモデル安全性への影響の検出が制限されていることが確認された。
本稿では,MLLMの安全性評価を行うための総合的なフレームワークである‘toolns’を提案する。
本フレームワークは,これらの制約に対処することを目的とした,包括的な有害なクエリデータセットと自動評価プロトコルから構成される。
まず、自動安全データセット生成パイプラインを設計し、MLLMにとって最も有害で多様なリスクシナリオを認識し、分類する。
安全評価において,審査員制度からインスピレーションを得て,特定の有害な行動を示すか否かを対象モデルが評価し,コンテンツセキュリティリスクの信頼性と偏りのない評価を提供する,共同LLMを採用する陪審審議会評価プロトコルの先駆者となる。
さらに、我々のベンチマークは、高いスケーラビリティとポテンシャルを示すオーディオモダリティにまで拡張できる。
本研究では,広く利用されているオープンソースMLLM15種と商用MLLM6種(例: GPT-4o, Gemini)の大規模実験を行い,既存のMLLMの安全性問題を明らかにし,画像品質やパラメータサイズなどのMLLMの安全性に関するいくつかの知見をインスタンス化した。
関連論文リスト
- SG-Bench: Evaluating LLM Safety Generalization Across Diverse Tasks and Prompt Types [21.683010095703832]
本研究では,大規模言語モデル(LLM)の安全性を様々なタスクやプロンプトタイプにまたがる一般化を評価するための新しいベンチマークを開発する。
このベンチマークは、生成的および識別的評価タスクを統合し、LLMの安全性に対する迅速なエンジニアリングとジェイルブレイクの影響を調べるための拡張データを含む。
評価の結果,ほとんどのLDMは生成的タスクよりも差別的タスクが悪く,プロンプトに非常に敏感であり,安全アライメントの一般化が不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-10-29T11:47:01Z) - Multimodal Situational Safety [73.63981779844916]
マルチモーダル・シチュエーション・セーフティ(Multimodal situational Safety)と呼ばれる新しい安全課題の評価と分析を行う。
MLLMが言語やアクションを通じても安全に応答するためには、言語クエリが対応する視覚的コンテキスト内での安全性への影響を評価する必要があることが多い。
我々は,現在のMLLMの状況安全性能を評価するためのマルチモーダル状況安全ベンチマーク(MSSBench)を開発した。
論文 参考訳(メタデータ) (2024-10-08T16:16:07Z) - SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal Behaviors [64.9938658716425]
安全でないユーザリクエストを認識して拒否する、大規模な言語モデル(LLM)の既存の評価は、3つの制限に直面している。
まず、既存の手法では、安全でないトピックの粗い粒度を使い、いくつかのきめ細かいトピックを過剰に表現している。
第二に、プロンプトの言語的特徴とフォーマッティングは、様々な言語、方言など、多くの評価において暗黙的にのみ考慮されているように、しばしば見過ごされる。
第3に、既存の評価は大きなLCMに頼っているため、コストがかかる可能性がある。
論文 参考訳(メタデータ) (2024-06-20T17:56:07Z) - MLLMGuard: A Multi-dimensional Safety Evaluation Suite for Multimodal Large Language Models [39.97454990633856]
本稿では,MLLMの多次元安全性評価スイートであるMLLMGuardを紹介する。
バイリンガル画像テキスト評価データセット、推論ユーティリティ、軽量評価器が含まれている。
13種類の先進モデルに対する評価結果は,MLLMが安全かつ責任を負うことができるまでには,まだかなりの道のりを歩んでいることを示唆している。
論文 参考訳(メタデータ) (2024-06-11T13:41:33Z) - ALERT: A Comprehensive Benchmark for Assessing Large Language Models' Safety through Red Teaming [64.86326523181553]
ALERTは、新しいきめ細かいリスク分類に基づいて安全性を評価するための大規模なベンチマークである。
脆弱性を特定し、改善を通知し、言語モデルの全体的な安全性を高めることを目的としている。
論文 参考訳(メタデータ) (2024-04-06T15:01:47Z) - SALAD-Bench: A Hierarchical and Comprehensive Safety Benchmark for Large Language Models [107.82336341926134]
SALAD-Benchは、大規模言語モデル(LLM)を評価するために特別に設計された安全ベンチマークである。
それは、その大規模な、豊富な多様性、三つのレベルにまたがる複雑な分類、多目的機能を通じて、従来のベンチマークを超越している。
論文 参考訳(メタデータ) (2024-02-07T17:33:54Z) - MM-SafetyBench: A Benchmark for Safety Evaluation of Multimodal Large Language Models [41.708401515627784]
我々は,Multimodal Large Language Models (MLLM) がクエリ関連画像によって容易に損なわれることを観察した。
画像ベース操作に対するMLLMの安全性クリティカルな評価を行うためのフレームワークであるMM-SafetyBenchを紹介する。
我々の研究は、潜在的に悪意のある悪用に対して、オープンソースのMLLMの安全性対策を強化し、強化するための協力的な努力の必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-11-29T12:49:45Z) - Safety Assessment of Chinese Large Language Models [51.83369778259149]
大規模言語モデル(LLM)は、侮辱や差別的なコンテンツを生成し、誤った社会的価値を反映し、悪意のある目的のために使用されることがある。
安全で責任があり倫理的なAIの展開を促進するため、LLMによる100万の強化プロンプトとレスポンスを含むセーフティプロンプトをリリースする。
論文 参考訳(メタデータ) (2023-04-20T16:27:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。