論文の概要: High Perceptual Quality Wireless Image Delivery with Denoising Diffusion
Models
- arxiv url: http://arxiv.org/abs/2309.15889v1
- Date: Wed, 27 Sep 2023 16:30:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-29 19:17:53.383369
- Title: High Perceptual Quality Wireless Image Delivery with Denoising Diffusion
Models
- Title(参考訳): ノイズ拡散モデルを用いた高感度無線画像配信
- Authors: Selim F. Yilmaz, Xueyan Niu, Bo Bai, Wei Han, Lei Deng and Deniz
Gunduz
- Abstract要約: 深層学習を用いたジョイントソースチャネル符号化(DeepJSCC)によるノイズの多い無線チャネル上の画像伝送問題について検討する。
対象画像のレンジ・ヌル空間分解を利用した新しい手法を提案する。
再建画像の歪みと知覚的品質は,標準的なDeepJSCCや最先端の生成学習法と比較して有意に向上した。
- 参考スコア(独自算出の注目度): 10.763194436114194
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the image transmission problem over a noisy wireless channel via
deep learning-based joint source-channel coding (DeepJSCC) along with a
denoising diffusion probabilistic model (DDPM) at the receiver. Specifically,
we are interested in the perception-distortion trade-off in the practical
finite block length regime, in which separate source and channel coding can be
highly suboptimal. We introduce a novel scheme that utilizes the range-null
space decomposition of the target image. We transmit the range-space of the
image after encoding and employ DDPM to progressively refine its null space
contents. Through extensive experiments, we demonstrate significant
improvements in distortion and perceptual quality of reconstructed images
compared to standard DeepJSCC and the state-of-the-art generative
learning-based method. We will publicly share our source code to facilitate
further research and reproducibility.
- Abstract(参考訳): 本稿では,ディープJSCC(DeepJSCC)によるノイズの多い無線チャネル上の画像伝送問題と,受信側での拡散確率モデル(DDPM)について考察する。
具体的には,実効的有限ブロック長系における知覚歪みのトレードオフに関心があり,音源とチャネルの符号化は極めて最適である。
本稿では,対象画像の領域ヌル空間分解を利用した新しいスキームを提案する。
エンコーディング後に画像のレンジ空間を送信し、DDPMを用いて、そのヌル空間内容を徐々に洗練する。
広範にわたる実験により,DeepJSCCや最先端の学習手法と比較して,再構成画像の歪みや知覚品質が著しく向上した。
さらなる研究と再現性を促進するために、ソースコードを公開します。
関連論文リスト
- Pixel-Aligned Multi-View Generation with Depth Guided Decoder [86.1813201212539]
画素レベルの画像・マルチビュー生成のための新しい手法を提案する。
従来の作業とは異なり、潜伏映像拡散モデルのVAEデコーダにマルチビュー画像にアテンション層を組み込む。
本モデルにより,マルチビュー画像間の画素アライメントが向上する。
論文 参考訳(メタデータ) (2024-08-26T04:56:41Z) - Enhancing Perception Quality in Remote Sensing Image Compression via Invertible Neural Network [10.427300958330816]
リモートセンシング画像をデコードして、特に低解像度で高い知覚品質を実現することは、依然として大きな課題である。
Invertible Neural Network-based Remote Sensor Image compression (INN-RSIC)法を提案する。
我々の INN-RSIC は、認識品質の観点から、既存の最先端のディープラーニングベースの画像圧縮手法よりも優れています。
論文 参考訳(メタデータ) (2024-05-17T03:52:37Z) - Diffusion-Aided Joint Source Channel Coding For High Realism Wireless Image Transmission [24.372996233209854]
DiffJSCCは条件拡散復調法により高現実性画像を生成する新しいフレームワークである。
768x512ピクセルのコダック画像を3072のシンボルで再現できる。
論文 参考訳(メタデータ) (2024-04-27T00:12:13Z) - Correcting Diffusion-Based Perceptual Image Compression with Privileged End-to-End Decoder [49.01721042973929]
本稿では,特権付きエンド・ツー・エンド・エンド・デコーダ・モデルを用いた拡散型画像圧縮法を提案する。
従来の知覚圧縮法と比較して,歪みと知覚の両方において,本手法の優位性を示す実験を行った。
論文 参考訳(メタデータ) (2024-04-07T10:57:54Z) - Distributed Deep Joint Source-Channel Coding with Decoder-Only Side
Information [6.411633100057159]
本稿では,受信側のみに相関する側情報が存在する場合,ノイズの多い無線チャネル上での低遅延画像伝送について検討する。
本稿では,デコーダのみの側情報をレシーバ側の複数段階に組み込んだ新しいニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-10-06T15:17:45Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
拡散モデルは画像復元作業において有望な結果を得たが、時間を要する、過剰な計算資源消費、不安定な復元に悩まされている。
本稿では,DiffLLと呼ばれる高能率かつ高能率な拡散型低光画像強調手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T03:08:28Z) - Denoising Diffusion Autoencoders are Unified Self-supervised Learners [58.194184241363175]
本稿では,拡散モデルにおけるネットワーク,すなわち拡散オートエンコーダ(DDAE)が,自己教師型学習者の統合であることを示す。
DDAEはすでに、補助エンコーダを使わずに、中間層内で線形分離可能な表現を強く学習している。
CIFAR-10 と Tiny-ImageNet の線形評価精度は95.9% と 50.0% である。
論文 参考訳(メタデータ) (2023-03-17T04:20:47Z) - Distributed Deep Joint Source-Channel Coding over a Multiple Access
Channel [0.0]
ディープジョイントソースチャネル符号化(DeepJSCC)を用いたノイズの多い多重アクセスチャネル(MAC)上の分散画像伝送について検討する。
本稿では,非直交的な方法で圧縮された画像表現を送信する,新しい共同画像圧縮・伝送方式を提案する。
現在のDeepJSCCを用いた伝送と比較して,再構成画像の品質は大幅に向上した。
論文 参考訳(メタデータ) (2022-11-17T22:36:03Z) - Denoising Diffusion Error Correction Codes [92.10654749898927]
近年、ニューラルデコーダは古典的デコーダ技術に対する優位性を実証している。
最近の最先端のニューラルデコーダは複雑で、多くのレガシデコーダの重要な反復的スキームが欠如している。
本稿では,任意のブロック長の線形符号のソフトデコードにデノナイズ拡散モデルを適用することを提案する。
論文 参考訳(メタデータ) (2022-09-16T11:00:50Z) - Bandwidth-Agile Image Transmission with Deep Joint Source-Channel Coding [7.081604594416339]
画像が時間や頻度で徐々に層に伝達されるシナリオを考察する。
DeepJSCC-$l$は、畳み込みオートエンコーダを使用する革新的なソリューションである。
DeepJSCC-$l$は、低信号対雑音比(SNR)と小さな帯域幅規則の挑戦において、最先端のデジタルプログレッシブ伝送方式と同等の性能を持つ。
論文 参考訳(メタデータ) (2020-09-26T00:11:50Z) - Modeling Lost Information in Lossy Image Compression [72.69327382643549]
ロスシー画像圧縮は、デジタル画像の最もよく使われる演算子の1つである。
Invertible Lossy Compression (ILC) と呼ばれる新しい非可逆的フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-22T04:04:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。