Stackelberg Batch Policy Learning
- URL: http://arxiv.org/abs/2309.16188v2
- Date: Mon, 2 Oct 2023 00:29:01 GMT
- Title: Stackelberg Batch Policy Learning
- Authors: Wenzhuo Zhou, Annie Qu
- Abstract summary: Batch reinforcement learning (RL) defines the task of learning from a fixed batch of data lacking exhaustive exploration.
Worst-case optimality algorithms, which calibrate a value-function model class from logged experience, have emerged as a promising paradigm for batch RL.
We propose a novel gradient-based learning algorithm: StackelbergLearner, in which the leader player updates according to the total derivative of its objective instead of the usual individual gradient.
- Score: 3.5426153040167754
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Batch reinforcement learning (RL) defines the task of learning from a fixed
batch of data lacking exhaustive exploration. Worst-case optimality algorithms,
which calibrate a value-function model class from logged experience and perform
some type of pessimistic evaluation under the learned model, have emerged as a
promising paradigm for batch RL. However, contemporary works on this stream
have commonly overlooked the hierarchical decision-making structure hidden in
the optimization landscape. In this paper, we adopt a game-theoretical
viewpoint and model the policy learning diagram as a two-player general-sum
game with a leader-follower structure. We propose a novel stochastic
gradient-based learning algorithm: StackelbergLearner, in which the leader
player updates according to the total derivative of its objective instead of
the usual individual gradient, and the follower player makes individual updates
and ensures transition-consistent pessimistic reasoning. The derived learning
dynamic naturally lends StackelbergLearner to a game-theoretic interpretation
and provides a convergence guarantee to differentiable Stackelberg equilibria.
From a theoretical standpoint, we provide instance-dependent regret bounds with
general function approximation, which shows that our algorithm can learn a
best-effort policy that is able to compete against any comparator policy that
is covered by batch data. Notably, our theoretical regret guarantees only
require realizability without any data coverage and strong function
approximation conditions, e.g., Bellman closedness, which is in contrast to
prior works lacking such guarantees. Through comprehensive experiments, we find
that our algorithm consistently performs as well or better as compared to
state-of-the-art methods in batch RL benchmark and real-world datasets.
Related papers
- Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Bi-Level Offline Policy Optimization with Limited Exploration [1.8130068086063336]
We study offline reinforcement learning (RL) which seeks to learn a good policy based on a fixed, pre-collected dataset.
We propose a bi-level structured policy optimization algorithm that models a hierarchical interaction between the policy (upper-level) and the value function (lower-level)
We evaluate our model using a blend of synthetic, benchmark, and real-world datasets for offline RL, showing that it performs competitively with state-of-the-art methods.
arXiv Detail & Related papers (2023-10-10T02:45:50Z) - Value-Distributional Model-Based Reinforcement Learning [59.758009422067]
Quantifying uncertainty about a policy's long-term performance is important to solve sequential decision-making tasks.
We study the problem from a model-based Bayesian reinforcement learning perspective.
We propose Epistemic Quantile-Regression (EQR), a model-based algorithm that learns a value distribution function.
arXiv Detail & Related papers (2023-08-12T14:59:19Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
We propose a theoretical framework for studying behavior cloning of complex expert demonstrations using generative modeling.
We show that pure supervised cloning can generate trajectories matching the per-time step distribution of arbitrary expert trajectories.
arXiv Detail & Related papers (2023-07-27T04:27:26Z) - A Strong Baseline for Batch Imitation Learning [25.392006064406967]
We provide an easy-to-implement, novel algorithm for imitation learning under a strict data paradigm.
This paradigm allows our algorithm to be used for environments in which safety or cost are of critical concern.
arXiv Detail & Related papers (2023-02-06T14:03:33Z) - STEEL: Singularity-aware Reinforcement Learning [14.424199399139804]
Batch reinforcement learning (RL) aims at leveraging pre-collected data to find an optimal policy.
We propose a new batch RL algorithm that allows for singularity for both state and action spaces.
By leveraging the idea of pessimism and under some technical conditions, we derive a first finite-sample regret guarantee for our proposed algorithm.
arXiv Detail & Related papers (2023-01-30T18:29:35Z) - Policy learning "without" overlap: Pessimism and generalized empirical Bernstein's inequality [94.89246810243053]
This paper studies offline policy learning, which aims at utilizing observations collected a priori to learn an optimal individualized decision rule.
Existing policy learning methods rely on a uniform overlap assumption, i.e., the propensities of exploring all actions for all individual characteristics must be lower bounded.
We propose Pessimistic Policy Learning (PPL), a new algorithm that optimize lower confidence bounds (LCBs) instead of point estimates.
arXiv Detail & Related papers (2022-12-19T22:43:08Z) - Oracle Inequalities for Model Selection in Offline Reinforcement
Learning [105.74139523696284]
We study the problem of model selection in offline RL with value function approximation.
We propose the first model selection algorithm for offline RL that achieves minimax rate-optimal inequalities up to logarithmic factors.
We conclude with several numerical simulations showing it is capable of reliably selecting a good model class.
arXiv Detail & Related papers (2022-11-03T17:32:34Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
Uncertainty estimation with complex models, such as deep neural networks, can be difficult and unreliable.
We develop a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-actions.
We find that COMBO consistently performs as well or better as compared to prior offline model-free and model-based methods.
arXiv Detail & Related papers (2021-02-16T18:50:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.