Low-rank tensor completion via tensor joint rank with logarithmic composite norm
- URL: http://arxiv.org/abs/2309.16208v2
- Date: Thu, 18 Apr 2024 17:08:53 GMT
- Title: Low-rank tensor completion via tensor joint rank with logarithmic composite norm
- Authors: Hongbing Zhang,
- Abstract summary: A new method called the tensor joint rank with logarithmic composite norm (TJLC) method is proposed.
The proposed method achieves satisfactory recovery even when the observed information is as low as 1%, and the recovery performance improves significantly as the observed information increases.
- Score: 2.5191729605585005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low-rank tensor completion (LRTC) aims to recover a complete low-rank tensor from incomplete observed tensor, attracting extensive attention in various practical applications such as image processing and computer vision. However, current methods often perform well only when there is a sufficient of observed information, and they perform poorly or may fail when the observed information is less than 5\%. In order to improve the utilization of observed information, a new method called the tensor joint rank with logarithmic composite norm (TJLC) method is proposed. This method simultaneously exploits two types of tensor low-rank structures, namely tensor Tucker rank and tubal rank, thereby enhancing the inherent correlations between known and missing elements. To address the challenge of applying two tensor ranks with significantly different directly to LRTC, a new tensor Logarithmic composite norm is further proposed. Subsequently, the TJLC model and algorithm for the LRTC problem are proposed. Additionally, theoretical convergence guarantees for the TJLC method are provided. Experiments on various real datasets demonstrate that the proposed method outperforms state-of-the-art methods significantly. Particularly, the proposed method achieves satisfactory recovery even when the observed information is as low as 1\%, and the recovery performance improves significantly as the observed information increases.
Related papers
- Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Low-Rank Tensor Function Representation for Multi-Dimensional Data
Recovery [52.21846313876592]
Low-rank tensor function representation (LRTFR) can continuously represent data beyond meshgrid with infinite resolution.
We develop two fundamental concepts for tensor functions, i.e., the tensor function rank and low-rank tensor function factorization.
Our method substantiates the superiority and versatility of our method as compared with state-of-the-art methods.
arXiv Detail & Related papers (2022-12-01T04:00:38Z) - Error Analysis of Tensor-Train Cross Approximation [88.83467216606778]
We provide accuracy guarantees in terms of the entire tensor for both exact and noisy measurements.
Results are verified by numerical experiments, and may have important implications for the usefulness of cross approximations for high-order tensors.
arXiv Detail & Related papers (2022-07-09T19:33:59Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z) - Noisy Tensor Completion via Low-rank Tensor Ring [41.86521269183527]
tensor completion is a fundamental tool for incomplete data analysis, where the goal is to predict missing entries from partial observations.
Existing methods often make the explicit or implicit assumption that the observed entries are noise-free to provide a theoretical guarantee of exact recovery of missing entries.
This paper proposes a novel noisy tensor completion model, which complements the incompetence of existing works in handling the degeneration of high-order and noisy observations.
arXiv Detail & Related papers (2022-03-14T14:09:43Z) - MTC: Multiresolution Tensor Completion from Partial and Coarse
Observations [49.931849672492305]
Existing completion formulation mostly relies on partial observations from a single tensor.
We propose an efficient Multi-resolution Completion model (MTC) to solve the problem.
arXiv Detail & Related papers (2021-06-14T02:20:03Z) - Enhanced nonconvex low-rank approximation of tensor multi-modes for
tensor completion [1.3406858660972554]
We propose a novel low-rank approximation tensor multi-modes (LRATM)
A block-bound method-based algorithm is designed to efficiently solve the proposed model.
Numerical results on three types of public multi-dimensional datasets have tested and shown that our algorithm can recover a variety of low-rank tensors.
arXiv Detail & Related papers (2020-05-28T08:53:54Z) - Tensor completion via nonconvex tensor ring rank minimization with
guaranteed convergence [16.11872681638052]
In recent studies, the tensor ring (TR) rank has shown high effectiveness in tensor completion.
A recently proposed TR rank is based on capturing the structure within the weighted sum penalizing the singular value equally.
In this paper, we propose to use the logdet-based function as a non smooth relaxation for solutions practice.
arXiv Detail & Related papers (2020-05-14T03:13:17Z) - Multi-View Spectral Clustering Tailored Tensor Low-Rank Representation [105.33409035876691]
This paper explores the problem of multi-view spectral clustering (MVSC) based on tensor low-rank modeling.
We design a novel structured tensor low-rank norm tailored to MVSC.
We show that the proposed method outperforms state-of-the-art methods to a significant extent.
arXiv Detail & Related papers (2020-04-30T11:52:12Z) - Tensor denoising and completion based on ordinal observations [11.193504036335503]
We consider the problem of low-rank tensor estimation from possibly incomplete, ordinal-valued observations.
We propose a multi-linear cumulative link model, develop a rank-constrained M-estimator, and obtain theoretical accuracy guarantees.
We show that the proposed estimator is minimax optimal under the class of low-rank models.
arXiv Detail & Related papers (2020-02-16T07:09:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.