論文の概要: Weakly-Supervised Video Anomaly Detection with Snippet Anomalous
Attention
- arxiv url: http://arxiv.org/abs/2309.16309v1
- Date: Thu, 28 Sep 2023 10:03:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-29 15:09:15.541092
- Title: Weakly-Supervised Video Anomaly Detection with Snippet Anomalous
Attention
- Title(参考訳): Snippet Anomalous Attention を用いた弱スーパービジョンビデオ異常検出
- Authors: Yidan Fan, Yongxin Yu, Wenhuan Lu, Yahong Han
- Abstract要約: 弱教師付き異常検出のための異常注意機構を提案する。
提案手法は,擬似ラベルの監督を伴わないスニペットレベルの符号化機能を考慮したものである。
- 参考スコア(独自算出の注目度): 22.985681654402153
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With a focus on abnormal events contained within untrimmed videos, there is
increasing interest among researchers in video anomaly detection. Among
different video anomaly detection scenarios, weakly-supervised video anomaly
detection poses a significant challenge as it lacks frame-wise labels during
the training stage, only relying on video-level labels as coarse supervision.
Previous methods have made attempts to either learn discriminative features in
an end-to-end manner or employ a twostage self-training strategy to generate
snippet-level pseudo labels. However, both approaches have certain limitations.
The former tends to overlook informative features at the snippet level, while
the latter can be susceptible to noises. In this paper, we propose an Anomalous
Attention mechanism for weakly-supervised anomaly detection to tackle the
aforementioned problems. Our approach takes into account snippet-level encoded
features without the supervision of pseudo labels. Specifically, our approach
first generates snippet-level anomalous attention and then feeds it together
with original anomaly scores into a Multi-branch Supervision Module. The module
learns different areas of the video, including areas that are challenging to
detect, and also assists the attention optimization. Experiments on benchmark
datasets XDViolence and UCF-Crime verify the effectiveness of our method.
Besides, thanks to the proposed snippet-level attention, we obtain a more
precise anomaly localization.
- Abstract(参考訳): 非トリミングビデオに含まれる異常事象に焦点を当て、ビデオ異常検出の研究者の間では関心が高まっている。
異なるビデオ異常検出シナリオにおいて、弱い教師付きビデオ異常検出は、トレーニング段階でフレーム毎のラベルがなく、粗い監督としてビデオレベルラベルのみに依存するため、大きな課題となる。
従来の手法では、識別的特徴をエンドツーエンドで学習するか、2段階の自己学習戦略を用いてスニペットレベルの擬似ラベルを生成する。
しかし、どちらのアプローチにも一定の制限がある。
前者はスニペットレベルで情報的特徴を見落としやすい傾向にあり、後者はノイズに影響を受けやすい。
本稿では,上記の問題に対処するために,弱教師付き異常検出のための異常注意機構を提案する。
本手法は擬似ラベルの監督なしにスニペットレベルのエンコードされた特徴を考慮に入れる。
具体的には,まずスニペットレベルの異常な注意を発生させ,元の異常スコアとともにマルチブランチ・スーパービジョン・モジュールに入力する。
モジュールはビデオのさまざまな領域を学習し、検出が困難な領域も含み、注意の最適化を支援する。
ベンチマークデータセットXDViolenceとUCF-Crimeの実験により,本手法の有効性が検証された。
また,提案したスニペットレベルの注意により,より正確な局所化が得られる。
関連論文リスト
- Dynamic Erasing Network Based on Multi-Scale Temporal Features for
Weakly Supervised Video Anomaly Detection [103.92970668001277]
弱教師付きビデオ異常検出のための動的消去ネットワーク(DE-Net)を提案する。
まず,異なる長さのセグメントから特徴を抽出できるマルチスケール時間モデリングモジュールを提案する。
そして,検出された異常の完全性を動的に評価する動的消去戦略を設計する。
論文 参考訳(メタデータ) (2023-12-04T09:40:11Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
監視の弱いビデオ異常検出(VAD)は、ビデオフレームが正常であるか異常であるかを識別するためにビデオレベルラベルを利用する際、顕著な性能を達成した。
近年の研究は、より現実的な、オープンセットのVADに取り組み、異常や正常なビデオから見えない異常を検出することを目的としている。
本稿ではさらに一歩前進し、未確認および未確認の異常を検知・分類するために訓練済みの大規模モデルを活用することを目的とした、オープン語彙ビデオ異常検出(OVVAD)について検討する。
論文 参考訳(メタデータ) (2023-11-13T02:54:17Z) - A Coarse-to-Fine Pseudo-Labeling (C2FPL) Framework for Unsupervised
Video Anomaly Detection [4.494911384096143]
ビデオにおける異常事象の検出は、監視などのアプリケーションにおいて重要な問題である。
セグメントレベル(正規/異常)の擬似ラベルを生成する簡易な2段擬似ラベル生成フレームワークを提案する。
提案した粗大な擬似ラベル生成器は、慎重に設計された階層的分割クラスタリングと統計的仮説テストを用いている。
論文 参考訳(メタデータ) (2023-10-26T17:59:19Z) - Exploiting Completeness and Uncertainty of Pseudo Labels for Weakly
Supervised Video Anomaly Detection [149.23913018423022]
弱教師付きビデオ異常検出は、ビデオレベルのラベルのみを用いて、ビデオ内の異常事象を特定することを目的としている。
2段階の自己学習法は擬似ラベルの自己生成によって著しく改善されている。
本稿では,自己学習のための完全性と不確実性を利用した強化フレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-08T05:53:53Z) - Anomaly detection in surveillance videos using transformer based
attention model [3.2968779106235586]
本研究は、トレーニングビデオにおける異常セグメントの注釈付けを避けるために、弱教師付き戦略を用いることを示唆する。
提案するフレームワークは,実世界のデータセット,すなわちShanghaiTech Campusデータセットで検証される。
論文 参考訳(メタデータ) (2022-06-03T12:19:39Z) - Anomaly Crossing: A New Method for Video Anomaly Detection as
Cross-domain Few-shot Learning [32.0713939637202]
ビデオ異常検出は、ビデオで発生した異常事象を特定することを目的としている。
従来のアプローチのほとんどは、教師なしまたは半教師なしの手法で通常のビデオからのみ学習する。
本稿では,ビデオの異常検出に通常のビデオと異常ビデオの両方をフル活用することで,新たな学習パラダイムを提案する。
論文 参考訳(メタデータ) (2021-12-12T20:49:38Z) - UBnormal: New Benchmark for Supervised Open-Set Video Anomaly Detection [103.06327681038304]
本稿では,複数の仮想シーンで構成された教師付きオープンセット・ベンチマークを提案する。
既存のデータセットとは異なり、トレーニング時に画素レベルでアノテートされた異常事象を導入する。
UBnormalは最先端の異常検出フレームワークの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2021-11-16T17:28:46Z) - Weakly Supervised Video Anomaly Detection via Center-guided
Discriminative Learning [25.787860059872106]
監視ビデオの異常検出は、異常なビデオコンテンツと持続時間の多様性のために難しい作業です。
本稿では,トレーニング段階でビデオレベルラベルのみを必要とする異常回帰ネット(ar-net)と呼ばれる異常検出フレームワークを提案する。
本手法は,上海テクデータセットにおける映像異常検出に新たな最先端結果を与える。
論文 参考訳(メタデータ) (2021-04-15T06:41:23Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
本稿では,フレーム予測と適切な設計による新規で頑健な非教師付きビデオ異常検出手法を提案する。
提案手法は,CUHK Avenueデータセット上で88.3%のフレームレベルAUROCスコアを得る。
論文 参考訳(メタデータ) (2020-11-05T11:34:12Z) - A Self-Reasoning Framework for Anomaly Detection Using Video-Level
Labels [17.615297975503648]
監視ビデオにおける異常事象の検出は、画像およびビデオ処理コミュニティの間で困難かつ実践的な研究課題である。
本稿では、ビデオレベルラベルのみを用いて自己推論方式で訓練されたディープニューラルネットワークに基づく、弱い教師付き異常検出フレームワークを提案する。
提案するフレームワークは,UCF-crimeやShanghaiTech,Ped2など,公開されている実世界の異常検出データセット上で評価されている。
論文 参考訳(メタデータ) (2020-08-27T02:14:15Z) - Self-trained Deep Ordinal Regression for End-to-End Video Anomaly
Detection [114.9714355807607]
ビデオ異常検出に自己学習深層順序回帰を適用することで,既存の手法の2つの重要な限界を克服できることを示す。
我々は,手動で正規/異常データをラベル付けすることなく,共同表現学習と異常スコアリングを可能にする,エンドツーエンドのトレーニング可能なビデオ異常検出手法を考案した。
論文 参考訳(メタデータ) (2020-03-15T08:44:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。