論文の概要: Intrinsic Language-Guided Exploration for Complex Long-Horizon Robotic
Manipulation Tasks
- arxiv url: http://arxiv.org/abs/2309.16347v2
- Date: Thu, 7 Mar 2024 17:53:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-08 17:57:50.198879
- Title: Intrinsic Language-Guided Exploration for Complex Long-Horizon Robotic
Manipulation Tasks
- Title(参考訳): 複雑な長軸ロボットマニピュレーションタスクのための固有言語誘導探索
- Authors: Eleftherios Triantafyllidis, Filippos Christianos and Zhibin Li
- Abstract要約: 現在の強化学習アルゴリズムは、スパースで複雑な環境で苦労している。
Intrinsically Guided Exploration from Large Language Models (IGE-LLMs) フレームワークを提案する。
- 参考スコア(独自算出の注目度): 12.27904219271791
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current reinforcement learning algorithms struggle in sparse and complex
environments, most notably in long-horizon manipulation tasks entailing a
plethora of different sequences. In this work, we propose the Intrinsically
Guided Exploration from Large Language Models (IGE-LLMs) framework. By
leveraging LLMs as an assistive intrinsic reward, IGE-LLMs guides the
exploratory process in reinforcement learning to address intricate long-horizon
with sparse rewards robotic manipulation tasks. We evaluate our framework and
related intrinsic learning methods in an environment challenged with
exploration, and a complex robotic manipulation task challenged by both
exploration and long-horizons. Results show IGE-LLMs (i) exhibit notably higher
performance over related intrinsic methods and the direct use of LLMs in
decision-making, (ii) can be combined and complement existing learning methods
highlighting its modularity, (iii) are fairly insensitive to different
intrinsic scaling parameters, and (iv) maintain robustness against increased
levels of uncertainty and horizons.
- Abstract(参考訳): 現在の強化学習アルゴリズムは、ばらばらで複雑な環境で苦労している。
本稿では,大規模言語モデル(IGE-LLMs)フレームワークの本質的なガイドド・エクスプロレーションを提案する。
IGE-LLMは、LLMを補助的な本質的な報酬として活用することにより、強化学習における探索過程をガイドし、ロボット操作タスクのスパースな報酬で複雑なロングホライゾンに対処する。
我々は,探索に挑戦する環境と,探索とロングホリゾンの両方に挑戦する複雑なロボット操作タスクにおける,フレームワークと関連する本質的学習手法を評価する。
ige-llmsの結果
(i)本質的な方法よりも顕著に高い性能を示し、意思決定にLLMを直接使用すること。
(ii) モジュラリティを強調する既存の学習方法を組み合わせて補完することができる。
(iii) 異なる本質的スケーリングパラメータにかなり敏感であり、
(4)不確実性と地平線の増加に対する堅牢性を維持する。
関連論文リスト
- Improving In-Context Learning with Small Language Model Ensembles [2.3499129784547654]
In-context Learning (ICL) は安価で効率的な代替手段であるが、高度な手法の精度と一致しない。
本稿では,複数の微調整小言語モデル(SLM)の専門知識を活用することでICLを強化する新しいアプローチであるEnsemble SuperICLを提案する。
論文 参考訳(メタデータ) (2024-10-29T09:02:37Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
クロスモーダル推論(CMR)は、より高度な人工知能システムへの進化における重要な能力として、ますます認識されている。
CMRタスクに取り組むためにLLM(Large Language Models)をデプロイする最近のトレンドは、その有効性を高めるためのアプローチの新たな主流となっている。
本調査では,LLMを用いてCMRで適用された現在の方法論を,詳細な3階層分類に分類する。
論文 参考訳(メタデータ) (2024-09-19T02:51:54Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - LGR2: Language Guided Reward Relabeling for Accelerating Hierarchical Reinforcement Learning [22.99690700210957]
言語命令を利用して,より高レベルなポリシーのための静的報酬関数を生成する新しいHRLフレームワークを提案する。
言語誘導報酬はより低い原始的な振る舞いに影響されないため、LGR2は非定常性を緩和する。
弊社のアプローチは、難易度の高いスパークリワードロボットナビゲーションと操作環境において、70ドル以上の成功率を達成した。
論文 参考訳(メタデータ) (2024-06-09T18:40:24Z) - Benchmarking General-Purpose In-Context Learning [19.40952728849431]
In-context Learning (ICL) は、生成モデルに新しいタスクを効果的に、かつ効率的にオンザフライで対処する権限を与える。
本稿では,より広い範囲の課題に対処するためのICLの拡張について検討する。
GPICLの機能のトレーニングと評価に特化して開発されたベンチマークを2つ導入する。
論文 参考訳(メタデータ) (2024-05-27T14:50:42Z) - Variational Offline Multi-agent Skill Discovery [43.869625428099425]
本稿では,サブグループレベルの抽象化と時間レベルの抽象化を同時に取得し,マルチエージェントスキルを形成するための2つの新しい自動エンコーダ方式を提案する。
提案手法はオフラインのマルチタスクデータに適用可能であり,検出したサブグループスキルは再トレーニングすることなく,関連するタスク間で伝達可能である。
論文 参考訳(メタデータ) (2024-05-26T00:24:46Z) - RObotic MAnipulation Network (ROMAN) $\unicode{x2013}$ Hybrid
Hierarchical Learning for Solving Complex Sequential Tasks [70.69063219750952]
ロボットマニピュレーションネットワーク(ROMAN)のハイブリッド階層型学習フレームワークを提案する。
ROMANは、行動クローニング、模倣学習、強化学習を統合することで、タスクの汎用性と堅牢な障害回復を実現する。
実験結果から,これらの専門的な操作専門家の組織化と活性化により,ROMANは高度な操作タスクの長いシーケンスを達成するための適切なシーケンシャルなアクティベーションを生成することがわかった。
論文 参考訳(メタデータ) (2023-06-30T20:35:22Z) - Semantically Aligned Task Decomposition in Multi-Agent Reinforcement
Learning [56.26889258704261]
我々は,MARL(SAMA)における意味的アライズされたタスク分解という,新しい「不整合」意思決定手法を提案する。
SAMAは、潜在的な目標を示唆し、適切な目標分解とサブゴールアロケーションを提供するとともに、自己回帰に基づくリプランニングを提供する、チェーン・オブ・シントによる事前訓練された言語モデルを促進する。
SAMAは, 最先端のASG法と比較して, 試料効率に有意な優位性を示す。
論文 参考訳(メタデータ) (2023-05-18T10:37:54Z) - Efficient Reinforcement Learning in Block MDPs: A Model-free
Representation Learning Approach [73.62265030773652]
ブロック構造力学を用いたマルコフ決定過程における効率的な強化学習アルゴリズムであるBRIEEを提案する。
BRIEEは、潜伏状態の発見、探索、搾取を相互にインターリーブし、ほぼ最適な政策を確実に学べる。
我々は、BRIEEが最先端のBlock MDPアルゴリズムであるHOMER RLや、リッチ・オブザーブレーションの組み合わせロック問題に挑戦する経験的ベースラインよりも、より標本効率が高いことを示す。
論文 参考訳(メタデータ) (2022-01-31T19:47:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。