論文の概要: Trust at Your Own Peril: A Mixed Methods Exploration of the Ability of Large Language Models to Generate Expert-Like Systems Engineering Artifacts and a Characterization of Failure Modes
- arxiv url: http://arxiv.org/abs/2502.09690v1
- Date: Thu, 13 Feb 2025 17:05:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 19:47:35.516076
- Title: Trust at Your Own Peril: A Mixed Methods Exploration of the Ability of Large Language Models to Generate Expert-Like Systems Engineering Artifacts and a Characterization of Failure Modes
- Title(参考訳): 自分自身の障害に対する信頼: 専門家のようなシステム工学の成果物を生成するための大規模言語モデルの能力の探索と失敗モードのキャラクタリゼーション
- Authors: Taylan G. Topcu, Mohammed Husain, Max Ofsa, Paul Wach,
- Abstract要約: そこでは,人間の専門家が作成したSEアーティファクトをベンチマークとして用いた経験的探索の結果を報告する。
次に、AI生成されたアーティファクトとベンチマークを比較するために、2倍の混合メソッドアプローチを採用しました。
2つの素材は非常に似ているように見えるが、AIが生成したアーティファクトは深刻な障害モードを示しており、検出は困難である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-purpose Large Language Models (LLMs), a subset of generative Artificial Intelligence (AI), have recently made significant progress. While expectations for LLMs to assist systems engineering (SE) tasks are paramount; the interdisciplinary and complex nature of systems, along with the need to synthesize deep-domain knowledge and operational context, raise questions regarding the efficacy of LLMs to generate SE artifacts, particularly given that they are trained using data that is broadly available on the internet. To that end, we present results from an empirical exploration, where a human expert-generated SE artifact was taken as a benchmark, parsed, and fed into various LLMs through prompt engineering to generate segments of typical SE artifacts. This procedure was applied without any fine-tuning or calibration to document baseline LLM performance. We then adopted a two-fold mixed-methods approach to compare AI generated artifacts against the benchmark. First, we quantitatively compare the artifacts using natural language processing algorithms and find that when prompted carefully, the state-of-the-art algorithms cannot differentiate AI-generated artifacts from the human-expert benchmark. Second, we conduct a qualitative deep dive to investigate how they differ in terms of quality. We document that while the two-material appear very similar, AI generated artifacts exhibit serious failure modes that could be difficult to detect. We characterize these as: premature requirements definition, unsubstantiated numerical estimates, and propensity to overspecify. We contend that this study tells a cautionary tale about why the SE community must be more cautious adopting AI suggested feedback, at least when generated by multi-purpose LLMs.
- Abstract(参考訳): 生成人工知能(AI)のサブセットである多目的大言語モデル(LLM)は、最近大きな進歩を遂げている。
システムエンジニアリング(SE)タスクを支援することへのLLMの期待は最重要であり、システムの学際的で複雑な性質は、深いドメイン知識と運用コンテキストを合成する必要性とともに、SEアーティファクトを生成するためのLLMの有効性に関する疑問を提起する。
そこで我々は,人間の専門家が生成したSEアーティファクトをベンチマークとして分析し,解析し,様々なLSMに供給する実験結果を発表した。
この手順は、微調整や校正をせずに標準LLM性能を文書化せずに適用された。
次に、AI生成されたアーティファクトとベンチマークを比較するために、2倍の混合メソッドアプローチを採用しました。
まず、自然言語処理アルゴリズムを用いてアーティファクトを定量的に比較し、注意を喚起すると、最先端のアルゴリズムはAI生成アーティファクトと人間の専門ベンチマークを区別できない。
第2に、品質の面でどのように異なるかを調べるために、定性的な深い潜水を行う。
2つの素材は非常によく似ているように見えるが、AIが生成したアーティファクトは深刻な障害モードを示しており、検出は困難である。
これらの特徴は, 未確定な要件定義, 未確定な数値推定, 過度に特定する確率である。
この研究は、少なくとも多目的LLMによって生成された場合、なぜSEコミュニティがAIの提案されたフィードバックをもっと慎重に採用する必要があるのか、という注意深い物語を物語っている、と我々は主張する。
関連論文リスト
- A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
推論(Reasoning)は、論理的推論、問題解決、意思決定を可能にする基本的な認知プロセスである。
大規模言語モデル(LLM)の急速な進歩により、推論は高度なAIシステムを区別する重要な能力として浮上した。
我々は,(1)推論が達成される段階を定義するレジーム,(2)推論プロセスに関与するコンポーネントを決定するアーキテクチャの2つの側面に沿って既存の手法を分類する。
論文 参考訳(メタデータ) (2025-04-12T01:27:49Z) - How do Large Language Models Understand Relevance? A Mechanistic Interpretability Perspective [64.00022624183781]
大規模言語モデル(LLM)は、関連性を評価し、情報検索(IR)タスクをサポートする。
メカニスティック・インタプリタビリティのレンズを用いて,異なるLLMモジュールが関係判断にどのように寄与するかを検討する。
論文 参考訳(メタデータ) (2025-04-10T16:14:55Z) - Detecting Knowledge Boundary of Vision Large Language Models by Sampling-Based Inference [78.08901120841833]
視覚大言語モデル(VLLM)の知識境界を検出する手法を提案する。
本稿では,VLLMの知識境界の表現に成功し,性能の維持や改善を図りながら不差別な検索を抑えることができることを示す。
論文 参考訳(メタデータ) (2025-02-25T09:32:08Z) - Leveraging Explainable AI for LLM Text Attribution: Differentiating Human-Written and Multiple LLMs-Generated Text [1.1137087573421256]
本研究では,生成型AI大言語モデルを用いて生成されたテキストコンテンツの検出と識別を支援することを目的とする。
我々はランダムフォレスト(RF)やリカレントニューラルネットワーク(RNN)などの機械学習アルゴリズムを利用して、属性の重要な特徴を理解する。
本手法は,1) 人文とAIテキストを区別するバイナリ分類と,2) 人文と5種類のLDMツールで生成するテキストを区別するマルチ分類に分けられる。
論文 参考訳(メタデータ) (2025-01-06T18:46:53Z) - An Empirical Study on Automatically Detecting AI-Generated Source Code: How Far Are We? [8.0988059417354]
本稿では,AI生成コード検出の性能向上のための様々な手法を提案する。
我々の最良のモデルは最先端のAI生成コード検出器(GPTSniffer)より優れており、F1スコアは82.55である。
論文 参考訳(メタデータ) (2024-11-06T22:48:18Z) - GigaCheck: Detecting LLM-generated Content [72.27323884094953]
本稿では,GigaCheckを提案することによって生成したテキスト検出の課題について検討する。
本研究は,LLM生成テキストとLLM生成テキストを区別する手法と,Human-Machine協調テキストにおけるLLM生成間隔を検出する手法について検討する。
具体的には,テキスト内のAI生成間隔をローカライズするために,コンピュータビジョンから適応したDETRのような検出モデルと組み合わせて,微調整の汎用LLMを用いる。
論文 参考訳(メタデータ) (2024-10-31T08:30:55Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - GenDFIR: Advancing Cyber Incident Timeline Analysis Through Retrieval Augmented Generation and Large Language Models [0.08192907805418582]
デジタル法医学とインシデント応答(DFIR)におけるサイバータイムライン解析の重要性
伝統的な手法は、証拠の識別と特徴抽出のためにログやメタデータのような構造化された成果物に依存している。
本稿では,大規模言語モデル(LLM)を利用したフレームワークであるGenDFIR,特にゼロショットモードのLlama 3.1 8Bについて紹介し,Retrieval-Augmented Generation (RAG)エージェントと統合する。
論文 参考訳(メタデータ) (2024-09-04T09:46:33Z) - Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph [83.90988015005934]
不確実性定量化は機械学習アプリケーションにおいて重要な要素である。
最新のUQベースラインの集合を実装した新しいベンチマークを導入する。
我々は、11タスクにわたるUQと正規化技術に関する大規模な実証的研究を行い、最も効果的なアプローチを特定した。
論文 参考訳(メタデータ) (2024-06-21T20:06:31Z) - Detecting Hallucinations in Large Language Model Generation: A Token Probability Approach [0.0]
LLM(Large Language Models)は、幻覚と呼ばれる不正確な出力を生成する。
本稿では,トークンから得られる4つの数値的特徴と,他の評価者から得られる語彙的確率を用いた教師付き学習手法を提案する。
この方法は有望な結果をもたらし、3つの異なるベンチマークで複数のタスクで最先端の結果を上回る。
論文 参考訳(メタデータ) (2024-05-30T03:00:47Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
大規模言語モデル(LLM)は、言語理解と生成において革命的な能力を示している。
Retrieval-Augmented Generation (RAG)は、信頼性と最新の外部知識を提供する。
RA-LLMは、モデルの内部知識に頼るのではなく、外部および権威的な知識ベースを活用するために登場した。
論文 参考訳(メタデータ) (2024-05-10T02:48:45Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z) - How Effective are Large Language Models in Generating Software Specifications? [14.170320751508502]
大規模言語モデル(LLM)は多くのソフトウェア工学(SE)タスクにうまく適用されている。
ソフトウェアコメントやドキュメンテーションからソフトウェア仕様を生成するためのLCMの能力を評価するための、最初の実証的研究を行う。
論文 参考訳(メタデータ) (2023-06-06T00:28:39Z) - Pre-training Multi-task Contrastive Learning Models for Scientific
Literature Understanding [52.723297744257536]
事前学習言語モデル(LM)は、科学文献理解タスクにおいて有効であることを示す。
文献理解タスク間の共通知識共有を容易にするために,マルチタスクのコントラスト学習フレームワークであるSciMultを提案する。
論文 参考訳(メタデータ) (2023-05-23T16:47:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。