FG-NeRF: Flow-GAN based Probabilistic Neural Radiance Field for
Independence-Assumption-Free Uncertainty Estimation
- URL: http://arxiv.org/abs/2309.16364v2
- Date: Wed, 4 Oct 2023 14:51:01 GMT
- Title: FG-NeRF: Flow-GAN based Probabilistic Neural Radiance Field for
Independence-Assumption-Free Uncertainty Estimation
- Authors: Songlin Wei, Jiazhao Zhang, Yang Wang, Fanbo Xiang, Hao Su, He Wang
- Abstract summary: We propose an independence-assumption-free probabilistic neural radiance field based on Flow-GAN.
By combining the generative capability of adversarial learning and the powerful expressivity of normalizing flow, our method explicitly models the density-radiance distribution of the scene.
Our method demonstrates state-of-the-art performance by predicting lower rendering errors and more reliable uncertainty on both synthetic and real-world datasets.
- Score: 28.899779240902703
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural radiance fields with stochasticity have garnered significant interest
by enabling the sampling of plausible radiance fields and quantifying
uncertainty for downstream tasks. Existing works rely on the independence
assumption of points in the radiance field or the pixels in input views to
obtain tractable forms of the probability density function. However, this
assumption inadvertently impacts performance when dealing with intricate
geometry and texture. In this work, we propose an independence-assumption-free
probabilistic neural radiance field based on Flow-GAN. By combining the
generative capability of adversarial learning and the powerful expressivity of
normalizing flow, our method explicitly models the density-radiance
distribution of the whole scene. We represent our probabilistic NeRF as a
mean-shifted probabilistic residual neural model. Our model is trained without
an explicit likelihood function, thereby avoiding the independence assumption.
Specifically, We downsample the training images with different strides and
centers to form fixed-size patches which are used to train the generator with
patch-based adversarial learning. Through extensive experiments, our method
demonstrates state-of-the-art performance by predicting lower rendering errors
and more reliable uncertainty on both synthetic and real-world datasets.
Related papers
- CF-GO-Net: A Universal Distribution Learner via Characteristic Function Networks with Graph Optimizers [8.816637789605174]
We introduce an approach which employs the characteristic function (CF), a probabilistic descriptor that directly corresponds to the distribution.
Unlike the probability density function (pdf), the characteristic function not only always exists, but also provides an additional degree of freedom.
Our method allows the use of a pre-trained model, such as a well-trained autoencoder, and is capable of learning directly in its feature space.
arXiv Detail & Related papers (2024-09-19T09:33:12Z) - Amortizing intractable inference in diffusion models for vision, language, and control [89.65631572949702]
This paper studies amortized sampling of the posterior over data, $mathbfxsim prm post(mathbfx)propto p(mathbfx)r(mathbfx)$, in a model that consists of a diffusion generative model prior $p(mathbfx)$ and a black-box constraint or function $r(mathbfx)$.
We prove the correctness of a data-free learning objective, relative trajectory balance, for training a diffusion model that samples from
arXiv Detail & Related papers (2024-05-31T16:18:46Z) - Conditional Pseudo-Reversible Normalizing Flow for Surrogate Modeling in Quantifying Uncertainty Propagation [11.874729463016227]
We introduce a conditional pseudo-reversible normalizing flow for constructing surrogate models of a physical model polluted by additive noise.
The training process utilizes dataset consisting of input-output pairs without requiring prior knowledge about the noise and the function.
Our model, once trained, can generate samples from any conditional probability density functions whose high probability regions are covered by the training set.
arXiv Detail & Related papers (2024-03-31T00:09:58Z) - User-defined Event Sampling and Uncertainty Quantification in Diffusion
Models for Physical Dynamical Systems [49.75149094527068]
We show that diffusion models can be adapted to make predictions and provide uncertainty quantification for chaotic dynamical systems.
We develop a probabilistic approximation scheme for the conditional score function which converges to the true distribution as the noise level decreases.
We are able to sample conditionally on nonlinear userdefined events at inference time, and matches data statistics even when sampling from the tails of the distribution.
arXiv Detail & Related papers (2023-06-13T03:42:03Z) - Bi-Noising Diffusion: Towards Conditional Diffusion Models with
Generative Restoration Priors [64.24948495708337]
We introduce a new method that brings predicted samples to the training data manifold using a pretrained unconditional diffusion model.
We perform comprehensive experiments to demonstrate the effectiveness of our approach on super-resolution, colorization, turbulence removal, and image-deraining tasks.
arXiv Detail & Related papers (2022-12-14T17:26:35Z) - Learning Multivariate CDFs and Copulas using Tensor Factorization [39.24470798045442]
Learning the multivariate distribution of data is a core challenge in statistics and machine learning.
In this work, we aim to learn multivariate cumulative distribution functions (CDFs), as they can handle mixed random variables.
We show that any grid sampled version of a joint CDF of mixed random variables admits a universal representation as a naive Bayes model.
We demonstrate the superior performance of the proposed model in several synthetic and real datasets and applications including regression, sampling and data imputation.
arXiv Detail & Related papers (2022-10-13T16:18:46Z) - ManiFlow: Implicitly Representing Manifolds with Normalizing Flows [145.9820993054072]
Normalizing Flows (NFs) are flexible explicit generative models that have been shown to accurately model complex real-world data distributions.
We propose an optimization objective that recovers the most likely point on the manifold given a sample from the perturbed distribution.
Finally, we focus on 3D point clouds for which we utilize the explicit nature of NFs, i.e. surface normals extracted from the gradient of the log-likelihood and the log-likelihood itself.
arXiv Detail & Related papers (2022-08-18T16:07:59Z) - Conditional-Flow NeRF: Accurate 3D Modelling with Reliable Uncertainty
Quantification [44.598503284186336]
Conditional-Flow NeRF (CF-NeRF) is a novel probabilistic framework to incorporate uncertainty quantification into NeRF-based approaches.
CF-NeRF learns a distribution over all possible radiance fields modelling which is used to quantify the uncertainty associated with the modelled scene.
arXiv Detail & Related papers (2022-03-18T23:26:20Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Stochastic Neural Radiance Fields:Quantifying Uncertainty in Implicit 3D
Representations [19.6329380710514]
Uncertainty quantification is a long-standing problem in Machine Learning.
We propose Neural Radiance Fields (S-NeRF), a generalization of standard NeRF that learns a probability distribution over all the possible fields modeling the scene.
S-NeRF is able to provide more reliable predictions and confidence values than generic approaches previously proposed for uncertainty estimation in other domains.
arXiv Detail & Related papers (2021-09-05T16:56:43Z) - Contextual Dropout: An Efficient Sample-Dependent Dropout Module [60.63525456640462]
Dropout has been demonstrated as a simple and effective module to regularize the training process of deep neural networks.
We propose contextual dropout with an efficient structural design as a simple and scalable sample-dependent dropout module.
Our experimental results show that the proposed method outperforms baseline methods in terms of both accuracy and quality of uncertainty estimation.
arXiv Detail & Related papers (2021-03-06T19:30:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.