Libertas: Privacy-Preserving Computation for Decentralised Personal Data Stores
- URL: http://arxiv.org/abs/2309.16365v1
- Date: Thu, 28 Sep 2023 12:07:40 GMT
- Title: Libertas: Privacy-Preserving Computation for Decentralised Personal Data Stores
- Authors: Rui Zhao, Naman Goel, Nitin Agrawal, Jun Zhao, Jake Stein, Ruben Verborgh, Reuben Binns, Tim Berners-Lee, Nigel Shadbolt,
- Abstract summary: We propose a modular design for integrating Secure Multi-Party Computation with Solid.
Our architecture, Libertas, requires no protocol level changes in the underlying design of Solid.
We show how this can be combined with existing differential privacy techniques to also ensure output privacy.
- Score: 19.54818218429241
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven decision-making and AI applications present exciting new opportunities delivering widespread benefits. The rapid adoption of such applications triggers legitimate concerns about loss of privacy and misuse of personal data. This leads to a growing and pervasive tension between harvesting ubiquitous data on the Web and the need to protect individuals. Decentralised personal data stores (PDS) such as Solid are frameworks designed to give individuals ultimate control over their personal data. But current PDS approaches have limited support for ensuring privacy when computations combine data spread across users. Secure Multi-Party Computation (MPC) is a well-known subfield of cryptography, enabling multiple autonomous parties to collaboratively compute a function while ensuring the secrecy of inputs (input privacy). These two technologies complement each other, but existing practices fall short in addressing the requirements and challenges of introducing MPC in a PDS environment. For the first time, we propose a modular design for integrating MPC with Solid while respecting the requirements of decentralisation in this context. Our architecture, Libertas, requires no protocol level changes in the underlying design of Solid, and can be adapted to other PDS. We further show how this can be combined with existing differential privacy techniques to also ensure output privacy. We use empirical benchmarks to inform and evaluate our implementation and design choices. We show the technical feasibility and scalability pattern of the proposed system in two novel scenarios -- 1) empowering gig workers with aggregate computations on their earnings data; and 2) generating high-quality differentially-private synthetic data without requiring a trusted centre. With this, we demonstrate the linear scalability of Libertas, and gained insights about compute optimisations under such an architecture.
Related papers
- Collaborative Inference over Wireless Channels with Feature Differential Privacy [57.68286389879283]
Collaborative inference among multiple wireless edge devices has the potential to significantly enhance Artificial Intelligence (AI) applications.
transmitting extracted features poses a significant privacy risk, as sensitive personal data can be exposed during the process.
We propose a novel privacy-preserving collaborative inference mechanism, wherein each edge device in the network secures the privacy of extracted features before transmitting them to a central server for inference.
arXiv Detail & Related papers (2024-10-25T18:11:02Z) - Masked Differential Privacy [64.32494202656801]
We propose an effective approach called masked differential privacy (DP), which allows for controlling sensitive regions where differential privacy is applied.
Our method operates selectively on data and allows for defining non-sensitive-temporal regions without DP application or combining differential privacy with other privacy techniques within data samples.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
differential privacy (DP) offers a promising solution by ensuring models are 'almost indistinguishable' with or without any particular privacy unit.
We study user-level DP motivated by applications where it necessary to ensure uniform privacy protection across users.
arXiv Detail & Related papers (2024-06-20T13:54:32Z) - Provable Privacy with Non-Private Pre-Processing [56.770023668379615]
We propose a general framework to evaluate the additional privacy cost incurred by non-private data-dependent pre-processing algorithms.
Our framework establishes upper bounds on the overall privacy guarantees by utilising two new technical notions.
arXiv Detail & Related papers (2024-03-19T17:54:49Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - CaPS: Collaborative and Private Synthetic Data Generation from Distributed Sources [5.898893619901382]
We propose a framework for the collaborative and private generation of synthetic data from distributed data holders.
We replace the trusted aggregator with secure multi-party computation protocols and output privacy via differential privacy (DP)
We demonstrate the applicability and scalability of our approach for the state-of-the-art select-measure-generate algorithms MWEM+PGM and AIM.
arXiv Detail & Related papers (2024-02-13T17:26:32Z) - A Learning-based Declarative Privacy-Preserving Framework for Federated Data Management [23.847568516724937]
We introduce a new privacy-preserving technique that uses a deep learning model trained using Differentially-Private Descent (DP-SGD) algorithm.
We then demonstrate a novel declarative privacy-preserving workflow that allows users to specify "what private information to protect" rather than "how to protect"
arXiv Detail & Related papers (2024-01-22T22:50:59Z) - Decentralised, Scalable and Privacy-Preserving Synthetic Data Generation [8.982917734231165]
We build a novel system that allows the contributors of real data to autonomously participate in differentially private synthetic data generation.
Our solution is based on three building blocks namely: Solid (Social Linked Data), MPC (Secure Multi-Party Computation) and Trusted Execution Environments (TEEs)
We show how these three technologies can be effectively used to address various challenges in responsible and trustworthy synthetic data generation.
arXiv Detail & Related papers (2023-10-30T22:27:32Z) - Privacy-Preserving Federated Learning over Vertically and Horizontally
Partitioned Data for Financial Anomaly Detection [11.167661320589488]
In real-world financial anomaly detection scenarios, the data is partitioned both vertically and horizontally.
Our solution combines fully homomorphic encryption (HE), secure multi-party computation (SMPC), differential privacy (DP)
Our solution won second prize in the first phase of the U.S. Privacy Enhancing Technologies (PETs) Prize Challenge.
arXiv Detail & Related papers (2023-10-30T06:51:33Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability.
We study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of $f$-differential privacy (DP)
More specifically, we advance the existing literature by deriving tight $f$-DP guarantees for a variety of discrete-valued mechanisms.
arXiv Detail & Related papers (2023-02-19T16:58:53Z) - MPCLeague: Robust MPC Platform for Privacy-Preserving Machine Learning [5.203329540700177]
This thesis focuses on designing efficient MPC frameworks for 2, 3 and 4 parties, with at most one corruption and supports ring structures.
We propose two variants for each of our frameworks, with one variant aiming to minimise the execution time while the other focuses on the monetary cost.
arXiv Detail & Related papers (2021-12-26T09:25:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.