HIC-YOLOv5: Improved YOLOv5 For Small Object Detection
- URL: http://arxiv.org/abs/2309.16393v2
- Date: Thu, 9 Nov 2023 17:01:57 GMT
- Title: HIC-YOLOv5: Improved YOLOv5 For Small Object Detection
- Authors: Shiyi Tang, Shu Zhang, Yini Fang
- Abstract summary: An improved YOLOv5 model: HIC-YOLOv5 is proposed to address the aforementioned problems.
An involution block is adopted between the backbone and neck to increase channel information of the feature map.
Our result shows that HIC-YOLOv5 has improved mAP@[.5:.95] by 6.42% and mAP@0.5 by 9.38% on VisDrone 2019-DET dataset.
- Score: 2.4780916008623834
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Small object detection has been a challenging problem in the field of object
detection. There has been some works that proposes improvements for this task,
such as adding several attention blocks or changing the whole structure of
feature fusion networks. However, the computation cost of these models is
large, which makes deploying a real-time object detection system unfeasible,
while leaving room for improvement. To this end, an improved YOLOv5 model:
HIC-YOLOv5 is proposed to address the aforementioned problems. Firstly, an
additional prediction head specific to small objects is added to provide a
higher-resolution feature map for better prediction. Secondly, an involution
block is adopted between the backbone and neck to increase channel information
of the feature map. Moreover, an attention mechanism named CBAM is applied at
the end of the backbone, thus not only decreasing the computation cost compared
with previous works but also emphasizing the important information in both
channel and spatial domain. Our result shows that HIC-YOLOv5 has improved
mAP@[.5:.95] by 6.42% and mAP@0.5 by 9.38% on VisDrone-2019-DET dataset.
Related papers
- SOD-YOLOv8 -- Enhancing YOLOv8 for Small Object Detection in Traffic Scenes [1.3812010983144802]
Small Object Detection YOLOv8 (SOD-YOLOv8) is designed for scenarios involving numerous small objects.
SOD-YOLOv8 significantly improves small object detection, surpassing widely used models in various metrics.
In dynamic real-world traffic scenes, SOD-YOLOv8 demonstrated notable improvements in diverse conditions.
arXiv Detail & Related papers (2024-08-08T23:05:25Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - YOLO-TLA: An Efficient and Lightweight Small Object Detection Model based on YOLOv5 [19.388112026410045]
YOLO-TLA is an advanced object detection model building on YOLOv5.
We first introduce an additional detection layer for small objects in the neck network pyramid architecture.
This module uses sliding window feature extraction, which effectively minimizes both computational demand and the number of parameters.
arXiv Detail & Related papers (2024-02-22T05:55:17Z) - From Blurry to Brilliant Detection: YOLOv5-Based Aerial Object Detection
with Super Resolution [4.107182710549721]
We present an innovative approach that combines super-resolution and an adapted lightweight YOLOv5 architecture.
Our experimental results demonstrate the model's superior performance in detecting small and densely clustered objects.
arXiv Detail & Related papers (2024-01-26T05:50:58Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time
Object Detection [80.11152626362109]
We provide an efficient and performant object detector, termed YOLO-MS.
We train our YOLO-MS on the MS COCO dataset from scratch without relying on any other large-scale datasets.
Our work can also be used as a plug-and-play module for other YOLO models.
arXiv Detail & Related papers (2023-08-10T10:12:27Z) - An advanced YOLOv3 method for small object detection [2.906551456030129]
This paper introduces an improved YOLOv3 algorithm for small object detection.
In the proposed method, the dilated convolutions mish (DCM) module is introduced into the backbone network of YOLOv3.
In the neck network of YOLOv3, the convolutional block attention module (CBAM) and multi-level fusion module are introduced.
arXiv Detail & Related papers (2022-12-06T07:58:21Z) - AdaZoom: Adaptive Zoom Network for Multi-Scale Object Detection in Large
Scenes [57.969186815591186]
Detection in large-scale scenes is a challenging problem due to small objects and extreme scale variation.
We propose a novel Adaptive Zoom (AdaZoom) network as a selective magnifier with flexible shape and focal length to adaptively zoom the focus regions for object detection.
arXiv Detail & Related papers (2021-06-19T03:30:22Z) - Real-time object detection method based on improved YOLOv4-tiny [0.0]
YOLOv4-tiny is proposed based on YOLOv4 to simple the network structure and reduce parameters, which makes it be suitable for developing on the mobile and embedded devices.
It firstly uses two ResBlock-D modules in ResNet-D network instead of two CSPBlock modules in Yolov4-tiny, which reduces the computation complexity.
In the design of auxiliary network, two consecutive 3x3 convolutions are used to obtain 5x5 receptive fields to extract global features, and channel attention and spatial attention are also used to extract more effective information.
arXiv Detail & Related papers (2020-11-09T08:26:28Z) - DecAug: Augmenting HOI Detection via Decomposition [54.65572599920679]
Current algorithms suffer from insufficient training samples and category imbalance within datasets.
We propose an efficient and effective data augmentation method called DecAug for HOI detection.
Experiments show that our method brings up to 3.3 mAP and 1.6 mAP improvements on V-COCO and HICODET dataset.
arXiv Detail & Related papers (2020-10-02T13:59:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.