Diverse Target and Contribution Scheduling for Domain Generalization
- URL: http://arxiv.org/abs/2309.16460v1
- Date: Thu, 28 Sep 2023 14:10:25 GMT
- Title: Diverse Target and Contribution Scheduling for Domain Generalization
- Authors: Shaocong Long, Qianyu Zhou, Chenhao Ying, Lizhuang Ma, Yuan Luo
- Abstract summary: Generalization under the distribution shift has been a great challenge in computer vision.
We propose a new paradigm for DG called Diverse Target and Contribution Scheduling (DTCS)
DTCS comprises two innovative modules: Diverse Target Supervision (DTS) and Diverse Contribution Balance (DCB)
- Score: 34.29652655561764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generalization under the distribution shift has been a great challenge in
computer vision. The prevailing practice of directly employing the one-hot
labels as the training targets in domain generalization~(DG) can lead to
gradient conflicts, making it insufficient for capturing the intrinsic class
characteristics and hard to increase the intra-class variation. Besides,
existing methods in DG mostly overlook the distinct contributions of source
(seen) domains, resulting in uneven learning from these domains. To address
these issues, we firstly present a theoretical and empirical analysis of the
existence of gradient conflicts in DG, unveiling the previously unexplored
relationship between distribution shifts and gradient conflicts during the
optimization process. In this paper, we present a novel perspective of DG from
the empirical source domain's risk and propose a new paradigm for DG called
Diverse Target and Contribution Scheduling (DTCS). DTCS comprises two
innovative modules: Diverse Target Supervision (DTS) and Diverse Contribution
Balance (DCB), with the aim of addressing the limitations associated with the
common utilization of one-hot labels and equal contributions for source domains
in DG. In specific, DTS employs distinct soft labels as training targets to
account for various feature distributions across domains and thereby mitigates
the gradient conflicts, and DCB dynamically balances the contributions of
source domains by ensuring a fair decline in losses of different source
domains. Extensive experiments with analysis on four benchmark datasets show
that the proposed method achieves a competitive performance in comparison with
the state-of-the-art approaches, demonstrating the effectiveness and advantages
of the proposed DTCS.
Related papers
- PracticalDG: Perturbation Distillation on Vision-Language Models for Hybrid Domain Generalization [24.413415998529754]
We propose a new benchmark Hybrid Domain Generalization (HDG) and a novel metric $H2$-CV, which construct various splits to assess the robustness of algorithms.
Our method outperforms state-of-the-art algorithms on multiple datasets, especially improving the robustness when confronting data scarcity.
arXiv Detail & Related papers (2024-04-13T13:41:13Z) - Towards Domain-Specific Features Disentanglement for Domain
Generalization [23.13095840134744]
We propose a novel contrastive-based disentanglement method CDDG to exploit the over-looked domain-specific features.
Specifically, CDDG learns to decouple inherent mutually exclusive features by leveraging them in the latent space.
Experiments conducted on various benchmark datasets demonstrate the superiority of our method compared to other state-of-the-art approaches.
arXiv Detail & Related papers (2023-10-04T17:51:02Z) - Adaptive Domain Generalization via Online Disagreement Minimization [17.215683606365445]
Domain Generalization aims to safely transfer a model to unseen target domains.
AdaODM adaptively modifies the source model at test time for different target domains.
Results show AdaODM stably improves the generalization capacity on unseen domains.
arXiv Detail & Related papers (2022-08-03T11:51:11Z) - On Certifying and Improving Generalization to Unseen Domains [87.00662852876177]
Domain Generalization aims to learn models whose performance remains high on unseen domains encountered at test-time.
It is challenging to evaluate DG algorithms comprehensively using a few benchmark datasets.
We propose a universal certification framework that can efficiently certify the worst-case performance of any DG method.
arXiv Detail & Related papers (2022-06-24T16:29:43Z) - Instrumental Variable-Driven Domain Generalization with Unobserved
Confounders [53.735614014067394]
Domain generalization (DG) aims to learn from multiple source domains a model that can generalize well on unseen target domains.
We propose an instrumental variable-driven DG method (IV-DG) by removing the bias of the unobserved confounders with two-stage learning.
In the first stage, it learns the conditional distribution of the input features of one domain given input features of another domain.
In the second stage, it estimates the relationship by predicting labels with the learned conditional distribution.
arXiv Detail & Related papers (2021-10-04T13:32:57Z) - Towards Fair Knowledge Transfer for Imbalanced Domain Adaptation [61.317911756566126]
We propose a Towards Fair Knowledge Transfer framework to handle the fairness challenge in imbalanced cross-domain learning.
Specifically, a novel cross-domain mixup generation is exploited to augment the minority source set with target information to enhance fairness.
Our model significantly improves over 20% on two benchmarks in terms of the overall accuracy.
arXiv Detail & Related papers (2020-10-23T06:29:09Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
Partial domain adaptation (PDA) deals with a realistic and challenging problem when the source domain label space substitutes the target domain.
We propose an Adaptively-Accumulated Knowledge Transfer framework (A$2$KT) to align the relevant categories across two domains.
arXiv Detail & Related papers (2020-08-27T00:53:43Z) - Dual Distribution Alignment Network for Generalizable Person
Re-Identification [174.36157174951603]
Domain generalization (DG) serves as a promising solution to handle person Re-Identification (Re-ID)
We present a Dual Distribution Alignment Network (DDAN) which handles this challenge by selectively aligning distributions of multiple source domains.
We evaluate our DDAN on a large-scale Domain Generalization Re-ID (DG Re-ID) benchmark.
arXiv Detail & Related papers (2020-07-27T00:08:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.