論文の概要: Latent Noise Segmentation: How Neural Noise Leads to the Emergence of Segmentation and Grouping
- arxiv url: http://arxiv.org/abs/2309.16515v3
- Date: Wed, 23 Oct 2024 11:56:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:52:57.133533
- Title: Latent Noise Segmentation: How Neural Noise Leads to the Emergence of Segmentation and Grouping
- Title(参考訳): ラテントノイズセグメンテーション : ニューラルノイズがセグメンテーションとグルーピングの創発にどのように導くか
- Authors: Ben Lonnqvist, Zhengqing Wu, Michael H. Herzog,
- Abstract要約: 人間は知覚的なグルーピングを使用して、監督なしに画像のセグメント化を積極的に行うことができる。
教師なしの知覚的グループ化を解くための反直感的計算手法を提案する。
現実的な仮定の下では、ニューラルノイズは互いに物体を分離するのに有効であることを示す。
- 参考スコア(独自算出の注目度): 0.24578723416255752
- License:
- Abstract: Humans are able to segment images effortlessly without supervision using perceptual grouping. Here, we propose a counter-intuitive computational approach to solving unsupervised perceptual grouping and segmentation: that they arise because of neural noise, rather than in spite of it. We (1) mathematically demonstrate that under realistic assumptions, neural noise can be used to separate objects from each other; (2) that adding noise in a DNN enables the network to segment images even though it was never trained on any segmentation labels; and (3) that segmenting objects using noise results in segmentation performance that aligns with the perceptual grouping phenomena observed in humans, and is sample-efficient. We introduce the Good Gestalt (GG) datasets -- six datasets designed to specifically test perceptual grouping, and show that our DNN models reproduce many important phenomena in human perception, such as illusory contours, closure, continuity, proximity, and occlusion. Finally, we (4) show that our model improves performance on our GG datasets compared to other tested unsupervised models by $24.9\%$. Together, our results suggest a novel unsupervised segmentation method requiring few assumptions, a new explanation for the formation of perceptual grouping, and a novel potential benefit of neural noise.
- Abstract(参考訳): 人間は知覚的なグルーピングを使用して、監督なしに画像のセグメント化を積極的に行うことができる。
本稿では、教師なしの知覚的グループ化とセグメンテーションを解くための直感的計算手法を提案する。
本研究では,(1)現実的な仮定の下では,物体同士を分離するためにニューラルノイズを用いることが可能であること,(2)DNNにノイズを加えることにより,いかなるセグメンテーションラベルにも訓練されていないものの,画像のセグメンテーションが可能になること,(3)人間の知覚的グルーピング現象と整合するセグメンテーション性能において,ノイズを用いたセグメンテーションの結果がセグメンテーション性能に与える影響を数学的に示す。
GGデータセット(Good Gestalt) -- 知覚的グループ化を特にテストするために設計された6つのデータセットを導入し、私たちのDNNモデルが、照明輪郭、クロージャ、連続性、近接性、閉塞といった、人間の知覚における多くの重要な現象を再現していることを示す。
最後に,本モデルでは,GGデータセットの性能を他の非教師付きモデルと比較して24.9 %$で改善していることを示す。
本研究は, 少数の仮定を必要とする新しい教師なしセグメンテーション法, 知覚的グルーピングの形成に関する新たな説明, ニューラルノイズの新たなメリットを示唆するものである。
関連論文リスト
- UnSeg: One Universal Unlearnable Example Generator is Enough against All Image Segmentation [64.01742988773745]
未承認のプライベートデータ上での大規模なイメージセグメンテーションモデルのトレーニングに関して、プライバシーに関する懸念が高まっている。
我々は、学習不可能な例の概念を利用して、学習不可能なノイズを原画像に生成し、付加することにより、モデルトレーニングに使用不能な画像を作成する。
6つのメインストリームイメージセグメンテーションタスク、10つの広く使われているデータセット、7つの異なるネットワークアーキテクチャでUnSegの有効性を実証的に検証する。
論文 参考訳(メタデータ) (2024-10-13T16:34:46Z) - Combating Bilateral Edge Noise for Robust Link Prediction [56.43882298843564]
本稿では,RGIB(Robust Graph Information Bottleneck)という情報理論の原則を提案し,信頼性の高い監視信号を抽出し,表現の崩壊を回避する。
RGIB-SSLとRGIB-REPの2つのインスタンス化は、異なる手法の利点を活用するために検討されている。
6つのデータセットと3つのGNNの様々なノイズシナリオによる実験は、我々のRGIBインスタンスの有効性を検証する。
論文 参考訳(メタデータ) (2023-11-02T12:47:49Z) - Factorized Diffusion Architectures for Unsupervised Image Generation and
Segmentation [24.436957604430678]
本研究では,非教師付き拡散モデルとして訓練されたニューラルネットワークアーキテクチャを,画像の生成とセグメント分割の両面から同時に学習する。
実験により,複数のデータセットにまたがって,高精度な教師なし画像分割と高品質な合成画像生成を実現することができた。
論文 参考訳(メタデータ) (2023-09-27T15:32:46Z) - Learning Confident Classifiers in the Presence of Label Noise [5.829762367794509]
本稿では,ノイズ観測のための確率論的モデルを提案し,信頼性の高い分類とセグメンテーションモデルの構築を可能にする。
実験により,本アルゴリズムは,検討された分類問題と分割問題に対して,最先端の解よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-01-02T04:27:25Z) - Deep Semantic Statistics Matching (D2SM) Denoising Network [70.01091467628068]
本稿では,Deep Semantic Statistics Matching (D2SM) Denoising Networkを紹介する。
事前訓練された分類ネットワークの意味的特徴を利用して、意味的特徴空間における明瞭な画像の確率的分布と暗黙的に一致させる。
識別画像のセマンティックな分布を学習することで,ネットワークの認知能力を大幅に向上させることを実証的に見出した。
論文 参考訳(メタデータ) (2022-07-19T14:35:42Z) - Embedding contrastive unsupervised features to cluster in- and
out-of-distribution noise in corrupted image datasets [18.19216557948184]
Web画像検索に検索エンジンを使用することは、イメージデータセットを作成する際の手作業によるキュレーションに代わる誘惑的な手段である。
主な欠点は、回収された間違った(ノイズの多い)サンプルの割合である。
本稿では,教師なしのコントラスト特徴学習を用いた検出ステップから始める2段階のアルゴリズムを提案する。
比較学習のアライメントと均一性原理により,OODサンプルは単位超球面上のIDサンプルから線形に分離できることがわかった。
論文 参考訳(メタデータ) (2022-07-04T16:51:56Z) - Synergy Between Semantic Segmentation and Image Denoising via Alternate
Boosting [102.19116213923614]
ノイズ除去とセグメンテーションを交互に行うためのブーストネットワークを提案する。
我々は,ノイズによるセグメンテーション精度の低下に対処するだけでなく,画素別意味情報によってデノージング能力が向上することを示す。
実験の結果,デノイド画像の品質が大幅に向上し,セグメンテーション精度がクリーン画像に近いことを示した。
論文 参考訳(メタデータ) (2021-02-24T06:48:45Z) - Joint self-supervised blind denoising and noise estimation [0.0]
2つのニューラルネットワークが共同でクリーンシグナルを予測し、ノイズ分布を推定する。
本モデルがノイズ分布を効率的に捉える合成ノイズデータを用いた実証実験を行います。
論文 参考訳(メタデータ) (2021-02-16T08:37:47Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
この研究は、画像レベルのアノテーションとピクセルレベルのセグメンテーションのギャップを埋めることを目標に、弱い監督されたセマンティックセグメンテーション(WSSS)に対処する。
画像群における意味的依存関係を明示的にモデル化し,より信頼性の高い擬似的基盤構造を推定する,新たなグループ学習タスクとしてWSSSを定式化する。
特に、入力画像がグラフノードとして表現されるグループ単位のセマンティックマイニングのためのグラフニューラルネットワーク(GNN)を考案する。
論文 参考訳(メタデータ) (2020-12-09T12:40:13Z) - DenoiSeg: Joint Denoising and Segmentation [75.91760529986958]
我々は,いくつかの注釈付き基底真理セグメンテーションでエンドツーエンドに学習できる新しい手法であるDenoySegを提案する。
我々は、ノイズの多い画像だけで訓練できる自己教師付き遮音方式であるNoss2Voidを拡張して、密度の高い3クラスセグメンテーションを予測する。
論文 参考訳(メタデータ) (2020-05-06T17:42:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。