論文の概要: SupReMix: Supervised Contrastive Learning for Medical Imaging Regression with Mixup
- arxiv url: http://arxiv.org/abs/2309.16633v3
- Date: Sun, 09 Mar 2025 19:37:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:44:27.092863
- Title: SupReMix: Supervised Contrastive Learning for Medical Imaging Regression with Mixup
- Title(参考訳): SupReMix:Mixupを用いた医用画像回帰のためのコントラスト学習
- Authors: Yilei Wu, Zijian Dong, Chongyao Chen, Wangchunshu Zhou, Juan Helen Zhou,
- Abstract要約: 医用画像退行に対するコントラスト学習の可能性は,2つの重要な側面,すなわち常性意識と硬さの欠如により,隠蔽されていると論じる。
SupReMixを用いた医用画像回帰のための教師付きコントラスト学習を提案する。
アンカー・インクルージョン混合物(アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン
- 参考スコア(独自算出の注目度): 21.32896544112748
- License:
- Abstract: In medical image analysis, regression plays a critical role in computer-aided diagnosis. It enables quantitative measurements such as age prediction from structural imaging, cardiac function quantification, and molecular measurement from PET scans. While deep learning has shown promise for these tasks, most approaches focus solely on optimizing regression loss or model architecture, neglecting the quality of learned feature representations which are crucial for robust clinical predictions. Directly applying representation learning techniques designed for classification to regression often results in fragmented representations in the latent space, yielding sub-optimal performance. In this paper, we argue that the potential of contrastive learning for medical image regression has been overshadowed due to the neglect of two crucial aspects: ordinality-awareness and hardness. To address these challenges, we propose Supervised Contrastive Learning for Medical Imaging Regression with Mixup (SupReMix). It takes anchor-inclusive mixtures (mixup of the anchor and a distinct negative sample) as hard negative pairs and anchor-exclusive mixtures (mixup of two distinct negative samples) as hard positive pairs at the embedding level. This strategy formulates harder contrastive pairs by integrating richer ordinal information. Through theoretical analysis and extensive experiments on six datasets spanning MRI, X-ray, ultrasound, and PET modalities, we demonstrate that SupReMix fosters continuous ordered representations, significantly improving regression performance.
- Abstract(参考訳): 医用画像解析において、回帰はコンピュータ支援診断において重要な役割を果たす。
構造画像からの年齢予測、心機能定量化、PETスキャンからの分子測定などの定量的測定を可能にする。
ディープラーニングはこれらのタスクに有望であることを示しているが、ほとんどのアプローチは回帰損失やモデルアーキテクチャの最適化にのみ焦点を合わせ、堅牢な臨床予測に不可欠な学習特徴表現の品質を無視している。
回帰に分類用に設計された表現学習技術を直接適用すると、しばしば潜在空間における断片化された表現が生じ、準最適性能が得られる。
本稿では, 医用画像の回帰に対するコントラスト学習の可能性について, 2つの重要な側面, 常性意識と硬さの欠如により, 隠蔽されていると論じる。
これらの課題に対処するために,Mix(SupReMix)を用いた医用画像回帰のための教師付きコントラスト学習を提案する。
アンカー・インクルージョン混合物(アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン混合物、アンカー・インクルージョン
この戦略は、よりリッチな順序情報を統合することで、よりコントラスト的なペアを定式化する。
SupReMixは,MRI,X線,超音波,PETにまたがる6つのデータセットに関する理論的解析と広範な実験により,連続的な順序表現を育成し,レグレッション性能を著しく向上することを示した。
関連論文リスト
- ACCon: Angle-Compensated Contrastive Regularizer for Deep Regression [28.491074229136014]
ディープレグレッションでは、特徴空間における連続ラベル間の関係を捉えることが、関心の高まりを惹きつけている根本的な課題である。
既存のアプローチは、しばしばオーダーアウェアな表現学習や距離に基づく重み付けに依存している。
本研究では, アンカーと負のサンプル間のコサイン距離を補正する, 深部回帰のための角度補償型コントラスト正規化器を提案する。
論文 参考訳(メタデータ) (2025-01-13T03:55:59Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
我々は,クラスごとのサンプル数に関する事前知識を必要とせず,シンプルなロジットアプローチ(LORT)を開発した。
提案手法は,CIFAR100-LT, ImageNet-LT, iNaturalist 2018など,様々な不均衡データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-03-01T03:27:08Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - Over-training with Mixup May Hurt Generalization [32.64382185990981]
今回,Mixupトレーニングの既往の現象を報告する。
多くの標準データセットにおいて、Mixupトレーニングモデルの性能は、多くのエポックのトレーニング後に低下し始めます。
理論的には、Mixupトレーニングは、不要なデータ依存ラベルノイズを合成データに導入する可能性がある。
論文 参考訳(メタデータ) (2023-03-02T18:37:34Z) - Hybrid Contrastive Constraints for Multi-Scenario Ad Ranking [38.666592866591344]
マルチシナリオ広告ランキングは、複数のドメインやチャネルからのデータを活用して、統一されたランキングモデルをトレーニングすることを目的としている。
マルチシナリオ広告ランキングのためのHybrid Contrastive Constrained Approach (HC2)を提案する。
論文 参考訳(メタデータ) (2023-02-06T09:15:39Z) - C-Mixup: Improving Generalization in Regression [71.10418219781575]
混合アルゴリズムは、一対の例とその対応するラベルを線形補間することによって一般化を改善する。
ラベルの類似度に基づいてサンプリング確率を調整するC-Mixupを提案する。
C-Mixupは6.56%、4.76%、5.82%の改善、タスクの一般化、アウト・オブ・ディストリビューションの堅牢性を実現している。
論文 参考訳(メタデータ) (2022-10-11T20:39:38Z) - DoubleMix: Simple Interpolation-Based Data Augmentation for Text
Classification [56.817386699291305]
本稿では,DoubleMixと呼ばれる単純なデータ拡張手法を提案する。
DoubleMixはまず、トレーニングデータごとにいくつかの摂動サンプルを生成する。
次に、摂動データと元のデータを使って、隠れたニューラルネットワークの空間で2段階のステップを実行する。
論文 参考訳(メタデータ) (2022-09-12T15:01:04Z) - Hard Negative Sampling Strategies for Contrastive Representation
Learning [4.1531215150301035]
UnReMixは、アンカーの類似性、モデルの不確実性、代表性を考慮に入れた、ハードネガティブなサンプリング戦略である。
いくつかのベンチマークによる実験結果から,UnReMixは正のサンプル選択を改良し,その後,最先端のコントラスト学習法と比較した場合の下流性能が向上することが示された。
論文 参考訳(メタデータ) (2022-06-02T17:55:15Z) - MixRL: Data Mixing Augmentation for Regression using Reinforcement
Learning [2.1345682889327837]
データ拡張のための既存のテクニックは、主に分類タスクに焦点を当てており、回帰タスクに簡単には適用できない。
その結果,大容量データとラベル距離の混合がモデル性能に悪影響を及ぼす可能性が示唆された。
そこで本研究では,データ拡張メタ学習フレームワークであるMixRLを提案する。
論文 参考訳(メタデータ) (2021-06-07T07:01:39Z) - ReMix: Towards Image-to-Image Translation with Limited Data [154.71724970593036]
本稿では,この問題に対処するためのデータ拡張手法(ReMix)を提案する。
特徴レベルでのトレーニングサンプルを補間し、サンプル間の知覚的関係に基づく新しいコンテンツ損失を提案します。
提案手法は, 生成のあいまいさを効果的に低減し, コンテンツ保存結果を生成する。
論文 参考訳(メタデータ) (2021-03-31T06:24:10Z) - Doubly Contrastive Deep Clustering [135.7001508427597]
本稿では、サンプルビューとクラスビューの両方でコントラスト損失を構築する新しい二重コントラストディープクラスタリング(DCDC)フレームワークを紹介します。
具体的には、サンプルビューに対して、元のサンプルとその拡張バージョンのクラス分布を正のサンプルペアとして設定する。
クラスビューでは、クラスのサンプル分布から正のペアと負のペアを構築します。
このように、2つのコントラスト損失は、サンプルとクラスレベルでのミニバッチサンプルのクラスタリング結果をうまく制限します。
論文 参考訳(メタデータ) (2021-03-09T15:15:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。