UAV-assisted Semantic Communication with Hybrid Action Reinforcement
Learning
- URL: http://arxiv.org/abs/2309.16713v2
- Date: Fri, 1 Dec 2023 05:24:15 GMT
- Title: UAV-assisted Semantic Communication with Hybrid Action Reinforcement
Learning
- Authors: Peiyuan Si, Jun Zhao, Kwok-Yan Lam, Qing Yang
- Abstract summary: We propose a hybrid action reinforcement learning framework to make decisions on semantic model scale, channel allocation, transmission power, and UAV trajectory.
Simulation results indicate that the proposed hybrid action reinforcement learning framework can effectively improve the efficiency of uplink semantic data collection.
- Score: 19.48293218551122
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we aim to explore the use of uplink semantic communications
with the assistance of UAV in order to improve data collection effiicency for
metaverse users in remote areas. To reduce the time for uplink data collection
while balancing the trade-off between reconstruction quality and computational
energy cost, we propose a hybrid action reinforcement learning (RL) framework
to make decisions on semantic model scale, channel allocation, transmission
power, and UAV trajectory. The variables are classified into discrete type and
continuous type, which are optimized by two different RL agents to generate the
combined action. Simulation results indicate that the proposed hybrid action
reinforcement learning framework can effectively improve the efficiency of
uplink semantic data collection under different parameter settings and
outperforms the benchmark scenarios.
Related papers
- Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
We leverage an importance map to distill critical semantic information, introducing a cooperative perception semantic communication framework.
To counter the challenges posed by time-varying multipath fading, our approach incorporates the use of frequency-division multiplexing (OFDM) along with channel estimation and equalization strategies.
We introduce a novel semantic error detection method that is integrated with our semantic communication framework in the spirit of hybrid automatic repeated request (HARQ)
arXiv Detail & Related papers (2024-08-29T08:53:26Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
We propose an effective framework for Bridging and Modeling Correlations in pairwise data, named BMC.
We increase the consistency and informativeness of the pairwise preference signals through targeted modifications.
We identify that DPO alone is insufficient to model these correlations and capture nuanced variations.
arXiv Detail & Related papers (2024-08-14T11:29:47Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - Collaborative Ground-Space Communications via Evolutionary Multi-objective Deep Reinforcement Learning [113.48727062141764]
We propose a distributed collaborative beamforming (DCB)-based uplink communication paradigm for enabling ground-space direct communications.
DCB treats the terminals that are unable to establish efficient direct connections with the low Earth orbit (LEO) satellites as distributed antennas.
We propose an evolutionary multi-objective deep reinforcement learning algorithm to obtain the desirable policies.
arXiv Detail & Related papers (2024-04-11T03:13:02Z) - Distributed Autonomous Swarm Formation for Dynamic Network Bridging [40.27919181139919]
We formulate the problem of dynamic network bridging in a novel Decentralized Partially Observable Markov Decision Process (Dec-POMDP)
We propose a Multi-Agent Reinforcement Learning (MARL) approach for the problem based on Graph Convolutional Reinforcement Learning (DGN)
The proposed method is evaluated in a simulated environment and compared to a centralized baseline showing promising results.
arXiv Detail & Related papers (2024-04-02T01:45:03Z) - Multi-Agent Reinforcement Learning for Offloading Cellular Communications with Cooperating UAVs [21.195346908715972]
Unmanned aerial vehicles present an alternative means to offload data traffic from terrestrial BSs.
This paper presents a novel approach to efficiently serve multiple UAVs for data offloading from terrestrial BSs.
arXiv Detail & Related papers (2024-02-05T12:36:08Z) - Online Boosting Adaptive Learning under Concept Drift for Multistream
Classification [34.64751041290346]
Multistream classification poses significant challenges due to the necessity for rapid adaptation in dynamic streaming processes with concept drift.
We propose a novel Online Boosting Adaptive Learning (OBAL) method that adaptively learns the dynamic correlation among different streams.
arXiv Detail & Related papers (2023-12-17T23:10:39Z) - A Hybrid Framework of Reinforcement Learning and Convex Optimization for
UAV-Based Autonomous Metaverse Data Collection [16.731929552692524]
This paper considers a UAV-assisted Metaverse network, in which UAVs extend the coverage of the base station (BS) to collect the Metaverse data generated at roadside units (RSUs)
To improve the data collection efficiency, resource allocation and trajectory control are integrated into the system model.
Based on the proposed UAV-assisted Metaverse network system model, we design a hybrid framework with reinforcement learning and convex optimization to cooperatively solve the time-sequential optimization problem.
arXiv Detail & Related papers (2023-05-29T11:49:20Z) - Distributional Reinforcement Learning for mmWave Communications with
Intelligent Reflectors on a UAV [119.97450366894718]
A novel communication framework that uses an unmanned aerial vehicle (UAV)-carried intelligent reflector (IR) is proposed.
In order to maximize the downlink sum-rate, the optimal precoding matrix (at the base station) and reflection coefficient (at the IR) are jointly derived.
arXiv Detail & Related papers (2020-11-03T16:50:37Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver.
We minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming.
We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences.
arXiv Detail & Related papers (2020-05-25T01:42:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.