論文の概要: Resilience of Deep Learning applications: a systematic literature review of analysis and hardening techniques
- arxiv url: http://arxiv.org/abs/2309.16733v2
- Date: Thu, 30 May 2024 09:02:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 23:52:32.271451
- Title: Resilience of Deep Learning applications: a systematic literature review of analysis and hardening techniques
- Title(参考訳): ディープラーニング応用のレジリエンス:分析・硬化技術に関する体系的文献レビュー
- Authors: Cristiana Bolchini, Luca Cassano, Antonio Miele,
- Abstract要約: このレビューは、2019年1月から2024年3月までに発行された220の科学論文に基づいている。
著者らは、研究の類似点と特異点を解釈し、強調するために分類フレームワークを採用している。
- 参考スコア(独自算出の注目度): 3.265458968159693
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Machine Learning (ML) is currently being exploited in numerous applications being one of the most effective Artificial Intelligence (AI) technologies, used in diverse fields, such as vision, autonomous systems, and alike. The trend motivated a significant amount of contributions to the analysis and design of ML applications against faults affecting the underlying hardware. The authors investigate the existing body of knowledge on Deep Learning (among ML techniques) resilience against hardware faults systematically through a thoughtful review in which the strengths and weaknesses of this literature stream are presented clearly and then future avenues of research are set out. The review is based on 220 scientific articles published between January 2019 and March 2024. The authors adopt a classifying framework to interpret and highlight research similarities and peculiarities, based on several parameters, starting from the main scope of the work, the adopted fault and error models, to their reproducibility. This framework allows for a comparison of the different solutions and the identification of possible synergies. Furthermore, suggestions concerning the future direction of research are proposed in the form of open challenges to be addressed.
- Abstract(参考訳): 機械学習(ML)は現在、視覚や自律システムなど、さまざまな分野で使用されている最も効果的な人工知能(AI)技術の1つとして、多くのアプリケーションで利用されています。
この傾向は、基盤となるハードウェアに影響を与える障害に対して、MLアプリケーションの分析と設計にかなりの量の貢献を動機付けている。
筆者らは、この文献ストリームの強みと弱みを明確に示し、今後の研究の道筋を立案した思慮深いレビューを通じて、ハードウェア障害に対するディープラーニング(とML技術)のレジリエンスに関する既存の知識体系を体系的に検討する。
このレビューは、2019年1月から2024年3月までに発行された220の科学論文に基づいている。
著者らは,研究の類似点と特異点の解釈と強調を行うための分類枠組みを,本研究の主目的から,導入された故障モデルとエラーモデル,再現性に至るまで,いくつかのパラメータに基づいて採用している。
このフレームワークは、異なる解の比較と可能なシナジーの同定を可能にする。
また,今後の研究の方向性について,オープン課題の形で提案する。
関連論文リスト
- Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
オントロジはドメイン知識とメタデータを表現するために広く使われている。
1つの簡単な解決策は、統計分析と機械学習を統合することである。
埋め込みに関する多くの論文が出版されているが、体系的なレビューの欠如により、研究者はこの分野の包括的な理解を妨げている。
論文 参考訳(メタデータ) (2024-06-16T14:49:19Z) - RelevAI-Reviewer: A Benchmark on AI Reviewers for Survey Paper Relevance [0.8089605035945486]
本稿では,調査論文レビューの課題を分類問題として概念化するシステムであるRelevAI-Reviewerを提案する。
25,164のインスタンスからなる新しいデータセットを導入する。各インスタンスには1つのプロンプトと4つの候補論文があり、それぞれがプロンプトに関連している。
我々は,各論文の関連性を判断し,最も関連性の高い論文を識別できる機械学習(ML)モデルを開発した。
論文 参考訳(メタデータ) (2024-06-13T06:42:32Z) - Investigating Reproducibility in Deep Learning-Based Software Fault
Prediction [16.25827159504845]
ますます複雑な機械学習モデルが急速に採用されるようになると、学者が文献で報告される結果を再現することがますます困難になる。
特に、適用されたディープラーニングモデルと評価方法論が適切に文書化されていない場合と、コードとデータが共有されていない場合である。
我々は,2019年から2022年にかけて,トップレベルのソフトウェアエンジニアリングカンファレンスにおいて,現在の文献を体系的にレビューし,56件の研究論文のレベルを検討した。
論文 参考訳(メタデータ) (2024-02-08T13:00:18Z) - A Systematic Literature Review on Explainability for Machine/Deep
Learning-based Software Engineering Research [23.966640472958105]
本稿では,ソフトウェア工学の文脈におけるAIモデルの説明可能性の向上を目的とした,体系的な文献レビューを行う。
我々は,XAI技術がこれまで成功してきたSEタスク,(2)異なるXAI手法の分類と分析,(3)既存の評価手法を考察することを目的としている。
論文 参考訳(メタデータ) (2024-01-26T03:20:40Z) - Machine Unlearning: A Survey [56.79152190680552]
プライバシ、ユーザビリティ、および/または忘れられる権利のために、特定のサンプルに関する情報をマシンアンラーニングと呼ばれるモデルから削除する必要がある特別なニーズが生まれている。
この新興技術は、その革新と実用性により、学者と産業の両方から大きな関心を集めている。
この複雑なトピックを分析したり、さまざまなシナリオで既存の未学習ソリューションの実現可能性を比較したりした研究はない。
この調査は、未学習のテクニックに関する卓越した問題と、新しい研究機会のための実現可能な方向性を強調して締めくくった。
論文 参考訳(メタデータ) (2023-06-06T10:18:36Z) - Knowledge-enhanced Neural Machine Reasoning: A Review [67.51157900655207]
既存の知識強化手法を2つの主要なカテゴリと4つのサブカテゴリに分類する新しい分類法を導入する。
我々は、現在のアプリケーションドメインを解明し、将来的な研究の展望について洞察を提供する。
論文 参考訳(メタデータ) (2023-02-04T04:54:30Z) - Application of Artificial Intelligence and Machine Learning in
Libraries: A Systematic Review [0.0]
本研究の目的は,図書館における人工知能と機械学習の適用を探求する実証研究の合成を提供することである。
データはWeb of Science, Scopus, LISA, LISTAデータベースから収集された。
LIS領域に関連するAIとML研究の現在の状況は、主に理論的な研究に焦点が当てられていることを示している。
論文 参考訳(メタデータ) (2021-12-06T07:33:09Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
安全クリティカルなアプリケーションにディープニューラルネットワーク(DNN)を使用することは、多数のモデル固有の欠点のために困難です。
近年,これらの安全対策を目的とした最先端技術動物園が出現している。
本稿は、機械学習の専門家と安全エンジニアの両方に対処する。
論文 参考訳(メタデータ) (2021-04-29T09:54:54Z) - Individual Explanations in Machine Learning Models: A Survey for
Practitioners [69.02688684221265]
社会的関連性の高い領域の決定に影響を与える洗練された統計モデルの使用が増加しています。
多くの政府、機関、企業は、アウトプットが人間の解釈可能な方法で説明しにくいため、採用に消極的です。
近年,機械学習モデルに解釈可能な説明を提供する方法として,学術文献が多数提案されている。
論文 参考訳(メタデータ) (2021-04-09T01:46:34Z) - A Systematic Literature Review on the Use of Deep Learning in Software
Engineering Research [22.21817722054742]
ソフトウェア開発タスクを自動化するために、ソフトウェア工学(SE)研究者が採用するテクニックのセットが、ディープラーニング(DL)の概念に根ざしている。
本稿では,SE & DLの交差点における研究の体系的な文献レビューを行う。
我々は、機械学習技術の特定の問題領域への適用を規定する一連の原則である学習の構成要素を中心に分析を行う。
論文 参考訳(メタデータ) (2020-09-14T15:28:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。