論文の概要: RelevAI-Reviewer: A Benchmark on AI Reviewers for Survey Paper Relevance
- arxiv url: http://arxiv.org/abs/2406.10294v1
- Date: Thu, 13 Jun 2024 06:42:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 01:11:41.778688
- Title: RelevAI-Reviewer: A Benchmark on AI Reviewers for Survey Paper Relevance
- Title(参考訳): RelevAI-Reviewer: 調査論文関連のためのAIレビュアのベンチマーク
- Authors: Paulo Henrique Couto, Quang Phuoc Ho, Nageeta Kumari, Benedictus Kent Rachmat, Thanh Gia Hieu Khuong, Ihsan Ullah, Lisheng Sun-Hosoya,
- Abstract要約: 本稿では,調査論文レビューの課題を分類問題として概念化するシステムであるRelevAI-Reviewerを提案する。
25,164のインスタンスからなる新しいデータセットを導入する。各インスタンスには1つのプロンプトと4つの候補論文があり、それぞれがプロンプトに関連している。
我々は,各論文の関連性を判断し,最も関連性の高い論文を識別できる機械学習(ML)モデルを開発した。
- 参考スコア(独自算出の注目度): 0.8089605035945486
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in Artificial Intelligence (AI), particularly the widespread adoption of Large Language Models (LLMs), have significantly enhanced text analysis capabilities. This technological evolution offers considerable promise for automating the review of scientific papers, a task traditionally managed through peer review by fellow researchers. Despite its critical role in maintaining research quality, the conventional peer-review process is often slow and subject to biases, potentially impeding the swift propagation of scientific knowledge. In this paper, we propose RelevAI-Reviewer, an automatic system that conceptualizes the task of survey paper review as a classification problem, aimed at assessing the relevance of a paper in relation to a specified prompt, analogous to a "call for papers". To address this, we introduce a novel dataset comprised of 25,164 instances. Each instance contains one prompt and four candidate papers, each varying in relevance to the prompt. The objective is to develop a machine learning (ML) model capable of determining the relevance of each paper and identifying the most pertinent one. We explore various baseline approaches, including traditional ML classifiers like Support Vector Machine (SVM) and advanced language models such as BERT. Preliminary findings indicate that the BERT-based end-to-end classifier surpasses other conventional ML methods in performance. We present this problem as a public challenge to foster engagement and interest in this area of research.
- Abstract(参考訳): 近年の人工知能(AI)、特にLarge Language Models(LLM)の普及により、テキスト分析機能が大幅に強化されている。
この技術的進化は、伝統的に仲間の研究者によるピアレビューによって管理されるタスクである科学論文のレビューを自動化するためのかなりの約束を提供する。
研究の質を維持する上で重要な役割を担っているにもかかわらず、従来の査読プロセスはしばしば遅く、偏見を受けており、科学知識の迅速な伝播を妨げる可能性がある。
本稿では,論文レビューのタスクを分類問題として概念化するシステムであるRelevAI-Reviewerを提案する。
そこで本研究では,25,164インスタンスからなる新しいデータセットを提案する。
それぞれのインスタンスには1つのプロンプトと4つの候補論文が含まれており、それぞれがプロンプトに関連している。
目的は、各論文の関連性を決定し、最も関連するものを特定することができる機械学習(ML)モデルを開発することである。
本稿では,SVM(Support Vector Machine)のような従来のML分類器やBERTのような先進言語モデルなど,さまざまなベースラインアプローチについて検討する。
以上の結果から,BERTをベースとしたエンド・ツー・エンド分類器が従来のML手法を上回る性能を示した。
我々は,この問題を,この研究分野への関与と関心を高めるための公的な課題として提示する。
関連論文リスト
- Automating Bibliometric Analysis with Sentence Transformers and Retrieval-Augmented Generation (RAG): A Pilot Study in Semantic and Contextual Search for Customized Literature Characterization for High-Impact Urban Research [2.1728621449144763]
文献分析は、都市科学における研究動向、スコープ、影響を理解するために不可欠である。
キーワード検索に依存する伝統的な手法は、記事のタイトルやキーワードに明記されていない価値ある洞察を明らかにするのに失敗することが多い。
我々は、生成AIモデル、特にトランスフォーマーとレトリーバル拡張生成(RAG)を活用して、バイオロメトリ分析の自動化と強化を行う。
論文 参考訳(メタデータ) (2024-10-08T05:13:27Z) - System for systematic literature review using multiple AI agents:
Concept and an empirical evaluation [5.194208843843004]
本稿では,システム文献レビューの実施プロセスの完全自動化を目的とした,新しいマルチAIエージェントモデルを提案する。
このモデルは、研究者がトピックを入力するユーザフレンドリーなインターフェースを介して動作する。
関連する学術論文を検索するために使用される検索文字列を生成する。
モデルはこれらの論文の要約を自律的に要約する。
論文 参考訳(メタデータ) (2024-03-13T10:27:52Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [58.6354685593418]
本稿では, レビューを評価するために, 記事レベル, フィールド正規化, 大規模言語モデルを用いた書誌指標を提案する。
新たに登場したAI生成の文献レビューも評価されている。
この研究は、文学レビューの現在の課題についての洞察を与え、彼らの開発に向けた今後の方向性を思い起こさせる。
論文 参考訳(メタデータ) (2024-02-20T11:28:50Z) - Bridging Research and Readers: A Multi-Modal Automated Academic Papers
Interpretation System [47.13932723910289]
本稿では,3段階のプロセス段階を有するオープンソースマルチモーダル自動学術論文解釈システム(MMAPIS)を紹介する。
ドキュメントからプレーンテキストや表や図を別々に抽出するために、ハイブリッドなモダリティ前処理とアライメントモジュールを使用している。
すると、この情報は彼らが属するセクション名に基づいて調整され、同じセクション名を持つデータが同じセクションの下に分類される。
抽出されたセクション名を用いて、記事を短いテキストセグメントに分割し、LSMを通してセクション内とセクション間の特定の要約を容易にする。
論文 参考訳(メタデータ) (2024-01-17T11:50:53Z) - Chain-of-Factors Paper-Reviewer Matching [32.86512592730291]
本稿では,意味的・話題的・引用的要因を協調的に考慮した,論文レビューアマッチングのための統一モデルを提案する。
提案したChain-of-Factorsモデルの有効性を,最先端のペーパー-リビューアマッチング手法と科学的事前学習言語モデルと比較した。
論文 参考訳(メタデータ) (2023-10-23T01:29:18Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
本稿では,これらの課題に対処するために,13Bパラメータを持つ生成判断器Auto-Jを提案する。
我々のモデルは,大規模な実環境シナリオ下でのユーザクエリとLLM生成応答に基づいて訓練されている。
実験的に、Auto-Jはオープンソースモデルとクローズドソースモデルの両方を含む、強力なライバルのシリーズを上回っている。
論文 参考訳(メタデータ) (2023-10-09T07:27:15Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z) - Toward Educator-focused Automated Scoring Systems for Reading and
Writing [0.0]
本稿では,データとラベルの可用性,信頼性と拡張性,ドメインスコアリング,プロンプトとソースの多様性,伝達学習といった課題に対処する。
モデルトレーニングコストを増大させることなく、エッセイの長さを重要な特徴として保持する技術を採用している。
論文 参考訳(メタデータ) (2021-12-22T15:44:30Z) - Mining Implicit Relevance Feedback from User Behavior for Web Question
Answering [92.45607094299181]
本研究は,ユーザ行動と通過関連性との関連性を検討するための最初の研究である。
提案手法は,追加のラベル付きデータを使わずにパスランキングの精度を大幅に向上させる。
実際にこの研究は、グローバルな商用検索エンジンにおけるQAサービスの人為的ラベリングコストを大幅に削減する効果が証明されている。
論文 参考訳(メタデータ) (2020-06-13T07:02:08Z) - Recognizing Families In the Wild: White Paper for the 4th Edition Data
Challenge [91.55319616114943]
本稿では,Recognizing Families In the Wild(RFIW)評価における支援課題(親族検証,三対象検証,行方不明児の検索・検索)を要約する。
本研究の目的は、2020年のRFIWチャレンジと、将来的な方向性の予測について述べることである。
論文 参考訳(メタデータ) (2020-02-15T02:22:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。