論文の概要: Controlling Continuous Relaxation for Combinatorial Optimization
- arxiv url: http://arxiv.org/abs/2309.16965v4
- Date: Thu, 31 Oct 2024 12:21:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 16:58:36.735998
- Title: Controlling Continuous Relaxation for Combinatorial Optimization
- Title(参考訳): 組合せ最適化のための連続緩和制御
- Authors: Yuma Ichikawa,
- Abstract要約: 最適化のための教師なし学習解決器(CO)は、連続緩和戦略を用いてソフトソリューションを生成するニューラルネットワークを訓練する。
本研究では,ul-based solverの学習手法であるContinuous Relaxation Anneal(CRA)戦略を紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Unsupervised learning (UL)-based solvers for combinatorial optimization (CO) train a neural network that generates a soft solution by directly optimizing the CO objective using a continuous relaxation strategy. These solvers offer several advantages over traditional methods and other learning-based methods, particularly for large-scale CO problems. However, UL-based solvers face two practical issues: (I) an optimization issue, where UL-based solvers are easily trapped at local optima, and (II) a rounding issue, where UL-based solvers require artificial post-learning rounding from the continuous space back to the original discrete space, undermining the robustness of the results. This study proposes a Continuous Relaxation Annealing (CRA) strategy, an effective rounding-free learning method for UL-based solvers. CRA introduces a penalty term that dynamically shifts from prioritizing continuous solutions, effectively smoothing the non-convexity of the objective function, to enforcing discreteness, eliminating artificial rounding. Experimental results demonstrate that CRA significantly enhances the performance of UL-based solvers, outperforming existing UL-based solvers and greedy algorithms in complex CO problems. Additionally, CRA effectively eliminates artificial rounding and accelerates the learning process.
- Abstract(参考訳): 組合せ最適化(CO)のための教師なし学習(UL)ベースの解法は、連続緩和戦略を用いてCO目標を直接最適化することにより、ソフトソリューションを生成するニューラルネットワークを訓練する。
これらの解法は、特に大規模なCO問題に対して、従来の手法や他の学習ベースの手法よりもいくつかの利点を提供している。
しかし、ULベースの解法は、(I)ulベースの解法が局所最適に容易に閉じ込められる最適化問題、(II)ulベースの解法が連続空間から元の離散空間への人工的な後円化を必要とするラウンドリング問題という2つの実践的な問題に直面し、その結果の堅牢性を損なう。
本研究では,ul-based solver に対する効果的なラウンドリングフリー学習法である連続緩和アニーリング (CRA) 戦略を提案する。
CRAは、連続的な解の優先順位付けから、目的関数の非凸性を効果的に滑らかにし、離散性を強制し、人工的な丸めを排除し、動的に移行するペナルティ項を導入する。
実験により、CRAは、複雑なCO問題において、既存のULベースの解法およびグリージーアルゴリズムよりも優れ、ULベースの解法の性能を著しく向上させることが示された。
さらに、CRAは人工ラウンドを効果的に排除し、学習プロセスを加速する。
関連論文リスト
- Optimization by Parallel Quasi-Quantum Annealing with Gradient-Based Sampling [0.0]
本研究では、連続緩和による勾配に基づく更新と準量子アナリング(QQA)を組み合わせた別のアプローチを提案する。
数値実験により,本手法はiSCOと学習型解法に匹敵する性能を有する汎用解法であることが示された。
論文 参考訳(メタデータ) (2024-09-02T12:55:27Z) - Adaptive Layer Splitting for Wireless LLM Inference in Edge Computing: A Model-Based Reinforcement Learning Approach [18.153641696306707]
本研究では、モデルベース強化学習(MBRL)からインスピレーションを得て、エッジとユーザ機器(UE)間の最適分割点を決定するフレームワークを提案する。
報酬代理モデルを導入することで、頻繁な性能評価の計算コストを大幅に削減できる。
論文 参考訳(メタデータ) (2024-06-03T09:41:42Z) - An Efficient Learning-based Solver Comparable to Metaheuristics for the
Capacitated Arc Routing Problem [67.92544792239086]
我々は,高度メタヒューリスティックスとのギャップを著しく狭めるため,NNベースの解法を導入する。
まず,方向対応型注意モデル(DaAM)を提案する。
第2に、教師付き事前学習を伴い、堅牢な初期方針を確立するための教師付き強化学習スキームを設計する。
論文 参考訳(メタデータ) (2024-03-11T02:17:42Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
機械学習(ML)モデルは、制約付き最適化ソルバをエミュレートするために訓練される。
本稿では,MLモデルを用いて2つの解推定を直接予測する手法を提案する。
これにより、双対目的が損失関数であるエンドツーエンドのトレーニングスキームと、双対上昇法をエミュレートした原始的実現可能性への解推定を可能にする。
論文 参考訳(メタデータ) (2024-03-06T04:43:22Z) - Continuous Tensor Relaxation for Finding Diverse Solutions in Combinatorial Optimization Problems [0.6906005491572401]
本研究では、教師なし学習(UL)に基づくCOソルバのための連続的アン緩和(CTRA)を提案する。
CTRAは、単一のトレーニング実行で多様なソリューションを見つけるための計算効率のよいフレームワークである。
数値実験により、CTRAにより、ULベースの解法は、既存の解法を繰り返すよりもはるかに高速にこれらの多様な解を見つけることができることが示された。
論文 参考訳(メタデータ) (2024-02-03T15:31:05Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
本稿では,UnRolled Federated Learning (SURF)を導入する。
提案手法は,この拡張における2つの課題,すなわち,非学習者へのデータセット全体の供給の必要性と,フェデレート学習の分散的性質に対処する。
論文 参考訳(メタデータ) (2023-05-24T17:26:22Z) - Federated Compositional Deep AUC Maximization [58.25078060952361]
本研究では,曲線(AUC)のスコアを直接最適化することにより,不均衡なデータに対する新しいフェデレート学習法を開発した。
私たちの知る限りでは、このような好ましい理論的な結果を達成した最初の作品である。
論文 参考訳(メタデータ) (2023-04-20T05:49:41Z) - Accelerating Federated Edge Learning via Topology Optimization [41.830942005165625]
フェデレートエッジラーニング(FEEL)は、プライバシー保護の分散ラーニングを実現するための有望なパラダイムとして考えられている。
ストラグラー装置の存在により、過度の学習時間を消費する。
フェデレーション学習における不均一性問題に対処するために,新しいトポロジ最適化フェデレーション・エッジ・ラーニング(TOFEL)手法を提案する。
論文 参考訳(メタデータ) (2022-04-01T14:49:55Z) - Learning for Robust Combinatorial Optimization: Algorithm and
Application [26.990988571097827]
最適化学習(L2O)は、ニューラルネットワークの強い予測力を活用することにより、最適化問題を解決するための有望なアプローチとして登場した。
本稿では,不確実な状況下で頑健な解を迅速に出力するLRCOという新しい学習ベース最適化を提案する。
その結果、LRCOは、非常に少ない複雑さで、最悪のケースコストとランタイムを大幅に削減できることがわかった。
論文 参考訳(メタデータ) (2021-12-20T07:58:50Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
分散的ロバストな教師付き学習は、現実世界のアプリケーションのための信頼性の高い機械学習システムを構築するための重要なパラダイムとして登場している。
Wasserstein DRSLを解くための既存のアルゴリズムは、複雑なサブプロブレムを解くか、勾配を利用するのに失敗する。
我々はmin-max最適化のレンズを通してwaserstein drslを再検討し、スケーラブルで効率的に実装可能な超勾配アルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-04-27T16:56:09Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。