On the Power of the Weisfeiler-Leman Test for Graph Motif Parameters
- URL: http://arxiv.org/abs/2309.17053v3
- Date: Thu, 28 Mar 2024 11:00:52 GMT
- Title: On the Power of the Weisfeiler-Leman Test for Graph Motif Parameters
- Authors: Matthias Lanzinger, Pablo Barceló,
- Abstract summary: The $k$-dimensional Weisfeiler-Leman ($k$WL) test is a widely-recognized method for verifying graph isomorphism.
This paper provides a precise characterization of the WL-dimension of labeled graph motif parameters.
- Score: 9.599347633285637
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Seminal research in the field of graph neural networks (GNNs) has revealed a direct correspondence between the expressive capabilities of GNNs and the $k$-dimensional Weisfeiler-Leman ($k$WL) test, a widely-recognized method for verifying graph isomorphism. This connection has reignited interest in comprehending the specific graph properties effectively distinguishable by the $k$WL test. A central focus of research in this field revolves around determining the least dimensionality $k$, for which $k$WL can discern graphs with different number of occurrences of a pattern graph $P$. We refer to such a least $k$ as the WL-dimension of this pattern counting problem. This inquiry traditionally delves into two distinct counting problems related to patterns: subgraph counting and induced subgraph counting. Intriguingly, despite their initial appearance as separate challenges with seemingly divergent approaches, both of these problems are interconnected components of a more comprehensive problem: "graph motif parameters". In this paper, we provide a precise characterization of the WL-dimension of labeled graph motif parameters. As specific instances of this result, we obtain characterizations of the WL-dimension of the subgraph counting and induced subgraph counting problem for every labeled pattern $P$. We additionally demonstrate that in cases where the $k$WL test distinguishes between graphs with varying occurrences of a pattern $P$, the exact number of occurrences of $P$ can be computed uniformly using only local information of the last layer of a corresponding GNN. We finally delve into the challenge of recognizing the WL-dimension of various graph parameters. We give a polynomial time algorithm for determining the WL-dimension of the subgraph counting problem for given pattern $P$, answering an open question from previous work.
Related papers
- Towards Self-Interpretable Graph-Level Anomaly Detection [73.1152604947837]
Graph-level anomaly detection (GLAD) aims to identify graphs that exhibit notable dissimilarity compared to the majority in a collection.
We propose a Self-Interpretable Graph aNomaly dETection model ( SIGNET) that detects anomalous graphs as well as generates informative explanations simultaneously.
arXiv Detail & Related papers (2023-10-25T10:10:07Z) - Fine-grained Expressivity of Graph Neural Networks [15.766353435658043]
We consider continuous extensions of both $1$-WL and MPNNs to graphons.
We show that the continuous variant of $1$-WL delivers an accurate topological characterization of the expressive power of MPNNs on graphons.
We also evaluate different MPNN architectures based on their ability to preserve graph distances.
arXiv Detail & Related papers (2023-06-06T14:12:23Z) - The Subgraph Isomorphism Problem for Port Graphs and Quantum Circuits [0.0]
We give an algorithm to perform pattern matching in quantum circuits for many patterns simultaneously.
In the case of quantum circuits, we can express the bound obtained in terms of the maximum number of qubits.
arXiv Detail & Related papers (2023-02-13T22:09:02Z) - Learning to Count Isomorphisms with Graph Neural Networks [16.455234748896157]
Subgraph isomorphism counting is an important problem on graphs.
In this paper, we propose a novel graph neural network (GNN) called Count-GNN for subgraph isomorphism counting.
arXiv Detail & Related papers (2023-02-07T05:32:11Z) - Rethinking Explaining Graph Neural Networks via Non-parametric Subgraph
Matching [68.35685422301613]
We propose a novel non-parametric subgraph matching framework, dubbed MatchExplainer, to explore explanatory subgraphs.
It couples the target graph with other counterpart instances and identifies the most crucial joint substructure by minimizing the node corresponding-based distance.
Experiments on synthetic and real-world datasets show the effectiveness of our MatchExplainer by outperforming all state-of-the-art parametric baselines with significant margins.
arXiv Detail & Related papers (2023-01-07T05:14:45Z) - Representation Power of Graph Neural Networks: Improved Expressivity via
Algebraic Analysis [124.97061497512804]
We show that standard Graph Neural Networks (GNNs) produce more discriminative representations than the Weisfeiler-Lehman (WL) algorithm.
We also show that simple convolutional architectures with white inputs, produce equivariant features that count the closed paths in the graph.
arXiv Detail & Related papers (2022-05-19T18:40:25Z) - Interactive Visual Pattern Search on Graph Data via Graph Representation
Learning [20.795511688640296]
We propose a visual analytics system GraphQ to support human-in-the-loop, example-based, subgraph pattern search.
To support fast, interactive queries, we use graph neural networks (GNNs) to encode a graph as fixed-length latent vector representation.
We also propose a novel GNN for node-alignment called NeuroAlign to facilitate easy validation and interpretation of the query results.
arXiv Detail & Related papers (2022-02-18T22:30:28Z) - Random Subgraph Detection Using Queries [29.192695995340653]
The planted densest subgraph detection problem refers to the task of testing whether in a given (random) graph there is a subgraph that is unusually dense.
In this paper, we consider a natural variant of the above problem, where one can only observe a relatively small part of the graph using adaptive edge queries.
For this model, we determine the number of queries necessary and sufficient (accompanied with a quasi-polynomial optimal algorithm) for detecting the presence of the planted subgraph.
arXiv Detail & Related papers (2021-10-02T07:41:17Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Improving Graph Neural Network Expressivity via Subgraph Isomorphism
Counting [63.04999833264299]
"Graph Substructure Networks" (GSN) is a topologically-aware message passing scheme based on substructure encoding.
We show that it is strictly more expressive than the Weisfeiler-Leman (WL) graph isomorphism test.
We perform an extensive evaluation on graph classification and regression tasks and obtain state-of-the-art results in diverse real-world settings.
arXiv Detail & Related papers (2020-06-16T15:30:31Z) - Can Graph Neural Networks Count Substructures? [53.256112515435355]
We study the power of graph neural networks (GNNs) via their ability to count attributed graph substructures.
We distinguish between two types of substructure counting: inducedsubgraph-count and subgraphcount-count, and both positive and negative answers for popular GNN architectures.
arXiv Detail & Related papers (2020-02-10T18:53:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.