Interactive Visual Pattern Search on Graph Data via Graph Representation
Learning
- URL: http://arxiv.org/abs/2202.09459v1
- Date: Fri, 18 Feb 2022 22:30:28 GMT
- Title: Interactive Visual Pattern Search on Graph Data via Graph Representation
Learning
- Authors: Huan Song, Zeng Dai, Panpan Xu, Liu Ren
- Abstract summary: We propose a visual analytics system GraphQ to support human-in-the-loop, example-based, subgraph pattern search.
To support fast, interactive queries, we use graph neural networks (GNNs) to encode a graph as fixed-length latent vector representation.
We also propose a novel GNN for node-alignment called NeuroAlign to facilitate easy validation and interpretation of the query results.
- Score: 20.795511688640296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graphs are a ubiquitous data structure to model processes and relations in a
wide range of domains. Examples include control-flow graphs in programs and
semantic scene graphs in images. Identifying subgraph patterns in graphs is an
important approach to understanding their structural properties. We propose a
visual analytics system GraphQ to support human-in-the-loop, example-based,
subgraph pattern search in a database containing many individual graphs. To
support fast, interactive queries, we use graph neural networks (GNNs) to
encode a graph as fixed-length latent vector representation, and perform
subgraph matching in the latent space. Due to the complexity of the problem, it
is still difficult to obtain accurate one-to-one node correspondences in the
matching results that are crucial for visualization and interpretation. We,
therefore, propose a novel GNN for node-alignment called NeuroAlign, to
facilitate easy validation and interpretation of the query results. GraphQ
provides a visual query interface with a query editor and a multi-scale
visualization of the results, as well as a user feedback mechanism for refining
the results with additional constraints. We demonstrate GraphQ through two
example usage scenarios: analyzing reusable subroutines in program workflows
and semantic scene graph search in images. Quantitative experiments show that
NeuroAlign achieves 19-29% improvement in node-alignment accuracy compared to
baseline GNN and provides up to 100x speedup compared to combinatorial
algorithms. Our qualitative study with domain experts confirms the
effectiveness for both usage scenarios.
Related papers
- SPGNN: Recognizing Salient Subgraph Patterns via Enhanced Graph Convolution and Pooling [25.555741218526464]
Graph neural networks (GNNs) have revolutionized the field of machine learning on non-Euclidean data such as graphs and networks.
We propose a concatenation-based graph convolution mechanism that injectively updates node representations.
We also design a novel graph pooling module, called WL-SortPool, to learn important subgraph patterns in a deep-learning manner.
arXiv Detail & Related papers (2024-04-21T13:11:59Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Neural Graph Reasoning: Complex Logical Query Answering Meets Graph
Databases [63.96793270418793]
Complex logical query answering (CLQA) is a recently emerged task of graph machine learning.
We introduce the concept of Neural Graph Database (NGDBs)
NGDB consists of a Neural Graph Storage and a Neural Graph Engine.
arXiv Detail & Related papers (2023-03-26T04:03:37Z) - Learning to Count Isomorphisms with Graph Neural Networks [16.455234748896157]
Subgraph isomorphism counting is an important problem on graphs.
In this paper, we propose a novel graph neural network (GNN) called Count-GNN for subgraph isomorphism counting.
arXiv Detail & Related papers (2023-02-07T05:32:11Z) - Subgraph Matching via Query-Conditioned Subgraph Matching Neural
Networks and Bi-Level Tree Search [33.9052190473029]
Subgraph Matching is a core operation in graph database search, biomedical analysis, social group finding, etc.
In this paper, we propose a novel encoder-decoder neural network architecture to dynamically compute the matching information between the query and the target graphs.
Experiments on five large real-world target graphs show that N-BLS can significantly improve the subgraph matching performance.
arXiv Detail & Related papers (2022-07-21T04:47:21Z) - An Empirical Study of Retrieval-enhanced Graph Neural Networks [48.99347386689936]
Graph Neural Networks (GNNs) are effective tools for graph representation learning.
We propose a retrieval-enhanced scheme called GRAPHRETRIEVAL, which is agnostic to the choice of graph neural network models.
We conduct comprehensive experiments over 13 datasets, and we observe that GRAPHRETRIEVAL is able to reach substantial improvements over existing GNNs.
arXiv Detail & Related papers (2022-06-01T09:59:09Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
We propose a joint emphgraph learning and matching network, named GLAM, to explore reliable graph structures for boosting graph matching.
The proposed method is evaluated on three popular visual matching benchmarks (Pascal VOC, Willow Object and SPair-71k)
It outperforms previous state-of-the-art graph matching methods by significant margins on all benchmarks.
arXiv Detail & Related papers (2021-09-01T08:24:02Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
We propose a Graph Multiset Transformer (GMT) that captures the interaction between nodes according to their structural dependencies.
Our experimental results show that GMT significantly outperforms state-of-the-art graph pooling methods on graph classification benchmarks.
arXiv Detail & Related papers (2021-02-23T07:45:58Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.