論文の概要: A Vision-Guided Robotic System for Grasping Harvested Tomato Trusses in
Cluttered Environments
- arxiv url: http://arxiv.org/abs/2309.17170v1
- Date: Fri, 29 Sep 2023 12:07:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-02 14:16:29.247375
- Title: A Vision-Guided Robotic System for Grasping Harvested Tomato Trusses in
Cluttered Environments
- Title(参考訳): 乱雑な環境下での収穫トマトを移植する視覚誘導型ロボットシステム
- Authors: Luuk van den Bent, Tom\'as Coleman, Robert Babuska
- Abstract要約: 本研究では, 雑草を多く含む木枠に積み重ねたトラスを把握し, 収穫後の貯蔵, 輸送を行う方法を提案する。
この方法は、学習に基づく視覚システムからなり、まずクレート内の個々のトラスを識別し、茎上の適切な把握位置を決定する。
RGB-Dカメラを搭載したロボットマニピュレータを用いた実験では、山からすべてのトラスを拾うように指示されたとき、100%クリアランス率を示した。
- 参考スコア(独自算出の注目度): 4.5195969272623815
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Currently, truss tomato weighing and packaging require significant manual
work. The main obstacle to automation lies in the difficulty of developing a
reliable robotic grasping system for already harvested trusses. We propose a
method to grasp trusses that are stacked in a crate with considerable clutter,
which is how they are commonly stored and transported after harvest. The method
consists of a deep learning-based vision system to first identify the
individual trusses in the crate and then determine a suitable grasping location
on the stem. To this end, we have introduced a grasp pose ranking algorithm
with online learning capabilities. After selecting the most promising grasp
pose, the robot executes a pinch grasp without needing touch sensors or
geometric models. Lab experiments with a robotic manipulator equipped with an
eye-in-hand RGB-D camera showed a 100% clearance rate when tasked to pick all
trusses from a pile. 93% of the trusses were successfully grasped on the first
try, while the remaining 7% required more attempts.
- Abstract(参考訳): 現在、トマトの重量と包装にはかなりの手作業が必要である。
自動化の主な障害は、すでに収穫されたトラスのための信頼できるロボット把持システムを開発することの難しさにある。
本研究では, 雑草を多く含む木枠に積み重ねたトラスを把握し, 収穫後の貯蔵, 輸送を行う方法を提案する。
この方法は、学習に基づく視覚システムからなり、まずクレート内の個々のトラスを識別し、茎上の適切な把握位置を決定する。
この目的のために,オンライン学習機能を備えた把持ポーズランキングアルゴリズムを導入した。
最も有望な把持姿勢を選択した後、ロボットはタッチセンサーや幾何学モデルを必要としないピンチ把持を実行する。
rgb-dカメラを搭載したロボットマニピュレータによる実験では、すべてのトラスを山から拾う作業で100%クリアランス率を示した。
93%のトラスが最初の試練に成功し、残りの7%がそれ以上の試練を必要とした。
関連論文リスト
- DITTO: Demonstration Imitation by Trajectory Transformation [31.930923345163087]
そこで本研究では,RGB-Dビデオ録画による実演映像のワンショット模倣の問題に対処する。
本稿では,2段階のプロセスを提案する。第1段階では実演軌道をオフラインに抽出し,操作対象のセグメンテーションと,容器などの二次物体に対する相対運動を決定する。
オンライン軌道生成段階では、まず全ての物体を再検出し、次にデモ軌道を現在のシーンにワープし、ロボット上で実行します。
論文 参考訳(メタデータ) (2024-03-22T13:46:51Z) - simPLE: a visuotactile method learned in simulation to precisely pick,
localize, regrasp, and place objects [16.178331266949293]
本稿では,精密かつ汎用的なピック・アンド・プレイスの解法について検討する。
正確なピック・アンド・プレイスの解法としてシミュレートを提案する。
SimPLEは、オブジェクトCADモデルのみを前提に、オブジェクトの選択、再彫刻、配置を正確に学習する。
論文 参考訳(メタデータ) (2023-07-24T21:22:58Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
ロボット工学のための自己教師型感覚運動器事前学習手法を提案する。
我々のモデルはRTTと呼ばれ、センサモレータトークンのシーケンスで動作するトランスフォーマーである。
感覚運動の事前学習は、ゼロからトレーニングを一貫して上回り、優れたスケーリング特性を持ち、さまざまなタスク、環境、ロボット間での移動を可能にしている。
論文 参考訳(メタデータ) (2023-06-16T17:58:10Z) - Grasping Student: semi-supervised learning for robotic manipulation [0.7282230325785884]
本研究では,ロボットとのインタラクションを伴わずに収集する製品画像を利用した半教師付き把握システムの設計を行う。
少数のロボットトレーニングサンプルの体制では、ラベルのないデータを活用することで、10倍のデータセットサイズでパフォーマンスを実現することができる。
論文 参考訳(メタデータ) (2023-03-08T09:03:11Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
我々は、ロボット操作ポリシーのタスク非依存報酬関数を学習するために、幅広い操作タスクを解く人間のラベル付きビデオを使用する。
学習された報酬は、タイムコントラストの目的を用いて学習した埋め込み空間におけるゴールまでの距離に基づいている。
論文 参考訳(メタデータ) (2022-11-16T16:26:48Z) - Geometry-Aware Fruit Grasping Estimation for Robotic Harvesting in
Orchards [6.963582954232132]
幾何認識ネットワークであるA3Nは、エンドツーエンドのインスタンスセグメンテーションと把握推定を行うために提案されている。
我々は,フィールド環境下での果実の認識と検索をロボットが正確に行うことができるグローバル・ローカル・スキャン・ストラテジーを実装した。
全体として、ロボットシステムは、収穫実験において70%から85%の範囲で収穫の成功率を達成する。
論文 参考訳(メタデータ) (2021-12-08T16:17:26Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
多くのマルチタスク強化学習は、ロボットが常にすべてのタスクからデータを収集できると仮定している。
本研究では,物理ロボットシステムの実用的制約を動機として,現実的なマルチタスクRL問題について検討する。
我々は、ロボットのスキルセットを累積的に成長させるために、過去のタスクで学んだデータとポリシーを効果的に活用するアプローチを導出する。
論文 参考訳(メタデータ) (2021-09-19T18:00:51Z) - Geometry-Based Grasping of Vine Tomatoes [6.547498821163685]
ブドウトマトの形状に基づく把持方法を提案する。
トマトとトラス茎の幾何学的特徴を特定するためにコンピュータビジョンのパイプラインに依存している。
把握方法は、ロボットハンドとトラスの幾何学モデルを用いて、ステム上の適切な把握位置を決定する。
論文 参考訳(メタデータ) (2021-03-01T19:33:51Z) - Where is my hand? Deep hand segmentation for visual self-recognition in
humanoid robots [129.46920552019247]
本稿では、画像からロボットの手を切り離すための畳み込みニューラルネットワーク(CNN)を提案する。
ヒューマノイドロボットVizzyの手のセグメンテーションのために,Mask-RCNNネットワークを微調整した。
論文 参考訳(メタデータ) (2021-02-09T10:34:32Z) - Goal-Auxiliary Actor-Critic for 6D Robotic Grasping with Point Clouds [62.013872787987054]
6次元グルーピングのためのクローズドループ制御ポリシーを学習するための新しい手法を提案する。
本ポリシーでは,エゴセントリックカメラからの物体のセグメント化点雲を入力とし,ロボットグリップの連続した6次元制御動作を出力し,物体をつかむ。
論文 参考訳(メタデータ) (2020-10-02T07:42:00Z) - Morphology-Agnostic Visual Robotic Control [76.44045983428701]
MAVRICは、ロボットの形態に関する最小限の知識で機能するアプローチである。
本稿では,視覚誘導型3Dポイントリーチ,軌道追従,ロボットとロボットの模倣について紹介する。
論文 参考訳(メタデータ) (2019-12-31T15:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。