論文の概要: AnyDexGrasp: General Dexterous Grasping for Different Hands with Human-level Learning Efficiency
- arxiv url: http://arxiv.org/abs/2502.16420v1
- Date: Sun, 23 Feb 2025 03:26:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:52:42.137482
- Title: AnyDexGrasp: General Dexterous Grasping for Different Hands with Human-level Learning Efficiency
- Title(参考訳): AnyDexGrasp:人間レベルの学習効率を持つ異なる手のための汎用デクスタースグラスピング
- Authors: Hao-Shu Fang, Hengxu Yan, Zhenyu Tang, Hongjie Fang, Chenxi Wang, Cewu Lu,
- Abstract要約: 我々は,最小限のデータを用いてきめ細やかな把握を学習するための効率的なアプローチを提案する。
提案手法は,40個の訓練対象に対して数百のグリップ試行を行うだけで,人間レベルの学習効率で高い性能を達成できる。
この方法は、ヒューマノイドロボット、人工装具、その他頑丈で汎用的なロボット操作を必要とする領域に対する有望な応用を実証する。
- 参考スコア(独自算出の注目度): 49.868970174484204
- License:
- Abstract: We introduce an efficient approach for learning dexterous grasping with minimal data, advancing robotic manipulation capabilities across different robotic hands. Unlike traditional methods that require millions of grasp labels for each robotic hand, our method achieves high performance with human-level learning efficiency: only hundreds of grasp attempts on 40 training objects. The approach separates the grasping process into two stages: first, a universal model maps scene geometry to intermediate contact-centric grasp representations, independent of specific robotic hands. Next, a unique grasp decision model is trained for each robotic hand through real-world trial and error, translating these representations into final grasp poses. Our results show a grasp success rate of 75-95\% across three different robotic hands in real-world cluttered environments with over 150 novel objects, improving to 80-98\% with increased training objects. This adaptable method demonstrates promising applications for humanoid robots, prosthetics, and other domains requiring robust, versatile robotic manipulation.
- Abstract(参考訳): 我々は,ロボットハンド間のロボット操作を進化させるため,最小限のデータできめ細やかな把握を学習するための効率的なアプローチを提案する。
ロボットハンドに数百万のグリップラベルを必要とする従来の手法とは異なり、本手法は人間のレベルの学習効率で高い性能を達成する。
まず、普遍的なモデルがシーンの幾何学を、特定のロボットの手とは独立して、中間的な接触中心の把握表現にマッピングする。
次に、現実の試行錯誤を通じて各ロボットハンドに対して独自の把握決定モデルを訓練し、これらの表現を最終的な把握ポーズに変換する。
その結果,150以上の新規物体を持つ現実世界の散在する環境において,3つの異なるロボットハンドに対して75~95倍の達成率を示し,トレーニング対象の増加により80~98倍に向上した。
この適応可能な方法は、堅牢で汎用的なロボット操作を必要とするヒューマノイドロボット、義肢、その他の領域の有望な応用を実証する。
関連論文リスト
- Learning to Transfer Human Hand Skills for Robot Manipulations [12.797862020095856]
本稿では,人間の手の動きのデモから,ロボットに巧妙な操作課題を教える方法を提案する。
本手法では,人間の手の動き,ロボットの手の動き,物体の動きを3Dでマッピングする関節運動多様体を学習し,ある動きを他者から推測する。
論文 参考訳(メタデータ) (2025-01-07T22:33:47Z) - Towards Generalizable Zero-Shot Manipulation via Translating Human
Interaction Plans [58.27029676638521]
我々は、人間の受動的ビデオが、そのようなジェネラリストロボットを学習するための豊富なデータ源であることを示す。
我々は、シーンの現在の画像とゴール画像から将来の手やオブジェクトの設定を予測する人間の計画予測器を学習する。
学習システムは、40個のオブジェクトに一般化する16以上の操作スキルを実現できることを示す。
論文 参考訳(メタデータ) (2023-12-01T18:54:12Z) - Giving Robots a Hand: Learning Generalizable Manipulation with
Eye-in-Hand Human Video Demonstrations [66.47064743686953]
眼内カメラは、視覚に基づくロボット操作において、より優れたサンプル効率と一般化を可能にすることを約束している。
一方、人間がタスクを行うビデオは、ロボット遠隔操作の専門知識を欠いているため、収集コストがずっと安い。
本研究では,広範にラベルのない人間ビデオによるロボット模倣データセットを拡張し,眼球運動ポリシーの一般化を大幅に促進する。
論文 参考訳(メタデータ) (2023-07-12T07:04:53Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
本研究では,マイクロ進化的強化学習を用いて,操作スキルを人間からロボットに伝達可能であることを示す。
本稿では,ロボットの進化経路とポリシーを協調的に最適化する多次元進化経路探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-08T15:56:13Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
我々は、ロボット操作ポリシーのタスク非依存報酬関数を学習するために、幅広い操作タスクを解く人間のラベル付きビデオを使用する。
学習された報酬は、タイムコントラストの目的を用いて学習した埋め込み空間におけるゴールまでの距離に基づいている。
論文 参考訳(メタデータ) (2022-11-16T16:26:48Z) - From One Hand to Multiple Hands: Imitation Learning for Dexterous
Manipulation from Single-Camera Teleoperation [26.738893736520364]
我々は,iPadとコンピュータのみで3Dデモを効率的に収集する,新しい単一カメラ遠隔操作システムを提案する。
我々は,操作者の手の構造と形状が同じであるマニピュレータである物理シミュレータにおいて,各ユーザ向けにカスタマイズされたロボットハンドを構築する。
データを用いた模倣学習では、複数の複雑な操作タスクでベースラインを大幅に改善する。
論文 参考訳(メタデータ) (2022-04-26T17:59:51Z) - Learning Bipedal Robot Locomotion from Human Movement [0.791553652441325]
本研究では、実世界の二足歩行ロボットに、モーションキャプチャーデータから直接の動きを教えるための強化学習に基づく手法を提案する。
本手法は,シミュレーション環境下でのトレーニングから,物理ロボット上での実行へシームレスに移行する。
本研究では,ダイナミックウォークサイクルから複雑なバランスや手振りに至るまでの動作を内製したヒューマノイドロボットについて実演する。
論文 参考訳(メタデータ) (2021-05-26T00:49:37Z) - Where is my hand? Deep hand segmentation for visual self-recognition in
humanoid robots [129.46920552019247]
本稿では、画像からロボットの手を切り離すための畳み込みニューラルネットワーク(CNN)を提案する。
ヒューマノイドロボットVizzyの手のセグメンテーションのために,Mask-RCNNネットワークを微調整した。
論文 参考訳(メタデータ) (2021-02-09T10:34:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。