Graph-based Neural Weather Prediction for Limited Area Modeling
- URL: http://arxiv.org/abs/2309.17370v2
- Date: Tue, 14 Nov 2023 19:58:51 GMT
- Title: Graph-based Neural Weather Prediction for Limited Area Modeling
- Authors: Joel Oskarsson, Tomas Landelius, Fredrik Lindsten
- Abstract summary: We adapt the graph-based NeurWP approach to the limited area setting and propose a multi-scale hierarchical model extension.
Our approach is validated by experiments with a local model for the Nordic region.
- Score: 12.576113481317527
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rise of accurate machine learning methods for weather forecasting is
creating radical new possibilities for modeling the atmosphere. In the time of
climate change, having access to high-resolution forecasts from models like
these is also becoming increasingly vital. While most existing Neural Weather
Prediction (NeurWP) methods focus on global forecasting, an important question
is how these techniques can be applied to limited area modeling. In this work
we adapt the graph-based NeurWP approach to the limited area setting and
propose a multi-scale hierarchical model extension. Our approach is validated
by experiments with a local model for the Nordic region.
Related papers
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - MetMamba: Regional Weather Forecasting with Spatial-Temporal Mamba Model [4.896297413020192]
We show in this paper that MetMamba, a Deep Learning based Weather Prediction model built on a state-of-the-art state-space model, Mamba, offers notable performance gains.
We also demonstrate the feasibility of deep learning based limited area modeling via coupled training with a global host model.
arXiv Detail & Related papers (2024-08-12T11:09:25Z) - Forecasting the Future with Future Technologies: Advancements in Large Meteorological Models [3.332582598089642]
The field of meteorological forecasting has undergone a significant transformation with the integration of large models.
Models like FourCastNet, Pangu-Weather, GraphCast, ClimaX, and FengWu have made notable contributions by providing accurate, high-resolution forecasts.
arXiv Detail & Related papers (2024-04-10T00:52:54Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
We show that it is possible to produce an accurate precipitation nowcast using a data-driven neural network approach.
We evaluate our approaches on a real-life datasets using precipitation maps from the region of the Netherlands and binary images of cloud coverage of France.
arXiv Detail & Related papers (2020-07-08T20:33:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.