MetMamba: Regional Weather Forecasting with Spatial-Temporal Mamba Model
- URL: http://arxiv.org/abs/2408.06400v2
- Date: Wed, 14 Aug 2024 09:18:38 GMT
- Title: MetMamba: Regional Weather Forecasting with Spatial-Temporal Mamba Model
- Authors: Haoyu Qin, Yungang Chen, Qianchuan Jiang, Pengchao Sun, Xiancai Ye, Chao Lin,
- Abstract summary: We show in this paper that MetMamba, a Deep Learning based Weather Prediction model built on a state-of-the-art state-space model, Mamba, offers notable performance gains.
We also demonstrate the feasibility of deep learning based limited area modeling via coupled training with a global host model.
- Score: 4.896297413020192
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Learning based Weather Prediction (DLWP) models have been improving rapidly over the last few years, surpassing state of the art numerical weather forecasts by significant margins. While much of the optimization effort is focused on training curriculum to extend forecast range in the global context, two aspects remains less explored: limited area modeling and better backbones for weather forecasting. We show in this paper that MetMamba, a DLWP model built on a state-of-the-art state-space model, Mamba, offers notable performance gains and unique advantages over other popular backbones using traditional attention mechanisms and neural operators. We also demonstrate the feasibility of deep learning based limited area modeling via coupled training with a global host model.
Related papers
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
This paper proposes a physics-AI hybrid model (i.e., WeatherGFT) which Generalizes weather forecasts to Finer-grained Temporal scales.
Specifically, we employ a carefully designed PDE kernel to simulate physical evolution on a small time scale.
We introduce a lead time-aware training framework to promote the generalization of the model at different lead times.
arXiv Detail & Related papers (2024-05-22T16:21:02Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Graph-based Neural Weather Prediction for Limited Area Modeling [12.576113481317527]
We adapt the graph-based NeurWP approach to the limited area setting and propose a multi-scale hierarchical model extension.
Our approach is validated by experiments with a local model for the Nordic region.
arXiv Detail & Related papers (2023-09-29T16:20:34Z) - Generative Modeling of High-resolution Global Precipitation Forecasts [2.1485350418225244]
We present improvements to the architecture and training process of a current state-of-the art deep learning precipitation model (FourCastNet) using a novel generative adversarial network (GAN)
Our improvements achieve superior performance in capturing the extreme percentiles of global precipitation, while comparable to state-of-the-art NWP models in terms of forecast skill at 1--2 day lead times.
arXiv Detail & Related papers (2022-10-22T17:21:16Z) - Numerical Weather Forecasting using Convolutional-LSTM with Attention
and Context Matcher Mechanisms [10.759556555869798]
We introduce a novel deep learning architecture for forecasting high-resolution weather data.
Our Weather Model achieves significant performance improvements compared to baseline deep learning models.
arXiv Detail & Related papers (2021-02-01T08:30:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.