Adaptive Communications in Collaborative Perception with Domain Alignment for Autonomous Driving
- URL: http://arxiv.org/abs/2310.00013v3
- Date: Sat, 16 Mar 2024 15:20:43 GMT
- Title: Adaptive Communications in Collaborative Perception with Domain Alignment for Autonomous Driving
- Authors: Senkang Hu, Zhengru Fang, Haonan An, Guowen Xu, Yuan Zhou, Xianhao Chen, Yuguang Fang,
- Abstract summary: We propose ACC-DA, a channel-aware collaborative perception framework.
We first design a transmission delay minimization method, which can construct the communication graph.
We then propose an adaptive data reconstruction mechanism, which can dynamically adjust the rate-distortion trade-off to enhance perception efficiency.
- Score: 21.11621380546942
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collaborative perception among multiple connected and autonomous vehicles can greatly enhance perceptive capabilities by allowing vehicles to exchange supplementary information via communications. Despite advances in previous approaches, challenges still remain due to channel variations and data heterogeneity among collaborative vehicles. To address these issues, we propose ACC-DA, a channel-aware collaborative perception framework to dynamically adjust the communication graph and minimize the average transmission delay while mitigating the side effects from the data heterogeneity. Our novelties lie in three aspects. We first design a transmission delay minimization method, which can construct the communication graph and minimize the transmission delay according to different channel information state. We then propose an adaptive data reconstruction mechanism, which can dynamically adjust the rate-distortion trade-off to enhance perception efficiency. Moreover, it minimizes the temporal redundancy during data transmissions. Finally, we conceive a domain alignment scheme to align the data distribution from different vehicles, which can mitigate the domain gap between different vehicles and improve the performance of the target task. Comprehensive experiments demonstrate the effectiveness of our method in comparison to the existing state-of-the-art works.
Related papers
- DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Autonomous Driving [55.53171248839489]
We propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving.
Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner.
Experiments conducted on nuScenes dataset demonstrate the superior planning performance and great efficiency of DiFSD.
arXiv Detail & Related papers (2024-09-15T15:55:24Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
We leverage an importance map to distill critical semantic information, introducing a cooperative perception semantic communication framework.
To counter the challenges posed by time-varying multipath fading, our approach incorporates the use of frequency-division multiplexing (OFDM) along with channel estimation and equalization strategies.
We introduce a novel semantic error detection method that is integrated with our semantic communication framework in the spirit of hybrid automatic repeated request (HARQ)
arXiv Detail & Related papers (2024-08-29T08:53:26Z) - SmartCooper: Vehicular Collaborative Perception with Adaptive Fusion and
Judger Mechanism [23.824400533836535]
We introduce SmartCooper, an adaptive collaborative perception framework that incorporates communication optimization and a judger mechanism.
Our results demonstrate a substantial reduction in communication costs by 23.10% compared to the non-judger scheme.
arXiv Detail & Related papers (2024-02-01T04:15:39Z) - Towards Full-scene Domain Generalization in Multi-agent Collaborative
Bird's Eye View Segmentation for Connected and Autonomous Driving [54.60458503590669]
We propose a unified domain generalization framework applicable in both training and inference stages of collaborative perception.
We employ an Amplitude Augmentation (AmpAug) method to augment low-frequency image variations, broadening the model's ability to learn.
In the inference phase, we introduce an intra-system domain alignment mechanism to reduce or potentially eliminate the domain discrepancy.
arXiv Detail & Related papers (2023-11-28T12:52:49Z) - Interruption-Aware Cooperative Perception for V2X Communication-Aided
Autonomous Driving [49.42873226593071]
We propose V2X communication INterruption-aware COoperative Perception (V2X-INCOP) for V2X communication-aided autonomous driving.
We use historical cooperation information to recover missing information due to the interruptions and alleviate the impact of the interruption issue.
Experiments on three public cooperative perception datasets demonstrate that the proposed method is effective in alleviating the impacts of communication interruption on cooperative perception.
arXiv Detail & Related papers (2023-04-24T04:59:13Z) - Domain Adaptive Robotic Gesture Recognition with Unsupervised
Kinematic-Visual Data Alignment [60.31418655784291]
We propose a novel unsupervised domain adaptation framework which can simultaneously transfer multi-modality knowledge, i.e., both kinematic and visual data, from simulator to real robot.
It remedies the domain gap with enhanced transferable features by using temporal cues in videos, and inherent correlations in multi-modal towards recognizing gesture.
Results show that our approach recovers the performance with great improvement gains, up to 12.91% in ACC and 20.16% in F1score without using any annotations in real robot.
arXiv Detail & Related papers (2021-03-06T09:10:03Z) - Learning to Communicate and Correct Pose Errors [75.03747122616605]
We study the setting proposed in V2VNet, where nearby self-driving vehicles jointly perform object detection and motion forecasting in a cooperative manner.
We propose a novel neural reasoning framework that learns to communicate, to estimate potential errors, and to reach a consensus about those errors.
arXiv Detail & Related papers (2020-11-10T18:19:40Z) - Cooperative LIDAR Object Detection via Feature Sharing in Deep Networks [11.737037965090535]
We introduce the concept of feature sharing for cooperative object detection (FS-COD)
In our proposed approach, a better understanding of the environment is achieved by sharing partially processed data between cooperative vehicles.
It is shown that the proposed approach has significant performance superiority over the conventional single-vehicle object detection approaches.
arXiv Detail & Related papers (2020-02-19T20:47:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.