Electro-nuclear dynamics of single and double ionization of H$_2$ in
ultrafast intense laser pulses
- URL: http://arxiv.org/abs/2310.00189v2
- Date: Fri, 26 Jan 2024 21:25:53 GMT
- Title: Electro-nuclear dynamics of single and double ionization of H$_2$ in
ultrafast intense laser pulses
- Authors: Jean-Nicolas Vigneau, Thanh-Tung Nguyen Dang and Eric Charron
- Abstract summary: We present an efficient method for modeling the single and double ionization dynamics of the H$$ molecule in ultra intense laser fields.
The effect of vibrational dynamics on ionization yields and proton kinetic energy release spectra is demonstrated.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an efficient method for modeling the single and double ionization
dynamics of the H$_2$ molecule in ultrashort intense laser fields. This method
is based on a semi-analytical approach to calculate the time-dependent single
and double molecular ionization rates and on a numerical approach to describe
the vibrational motion that takes place in the intermediate molecular ion
H$_2^+$. This model allows for the prediction of the single and double
ionization probabilities of the H$_2$ molecule to be made over a wide range of
frequencies and laser intensities with limited computational time, while
providing a realistic estimate of the energy of the products of the
dissociative ionization and of the Coulomb explosion of the H$_2$ molecule. The
effect of vibrational dynamics on ionization yields and proton kinetic energy
release spectra is demonstrated and, in the case of the latter, discussed in
terms of basic strong-field molecular fragmentation mechanisms.
Related papers
- Extending the Tavis-Cummings model for molecular ensembles -- Exploring the effects of dipole self energies and static dipole moments [0.0]
We extend the Tavis-Cummings model for molecular ensembles.
We simulate excited-state dynamics and spectroscopy of MgH$+$ molecules resonantly coupled to an optical cavity.
arXiv Detail & Related papers (2024-04-16T15:58:40Z) - Strong-field ionization of chiral molecules with bicircular laser fields : sub-barrier dynamics, interference, and vortices [0.0]
Two-color laser fields produce quantum interference between photoelectrons emitted on the leading and trailing edges of the laser field oscillations.
We show that this interference is asymmetric along the light propagation direction and strongly enhances the sensitivity of the attoclock scheme to molecular chirality.
arXiv Detail & Related papers (2024-04-09T10:43:23Z) - Quench dynamics in higher-dimensional Holstein models: Insights from Truncated Wigner Approaches [41.94295877935867]
We study the melting of charge-density waves in a Holstein model after a sudden switch-on of the electronic hopping.
A comparison with exact data obtained for a Holstein chain shows that a semiclassical treatment of both the electrons and phonons is required in order to correctly describe the phononic dynamics.
arXiv Detail & Related papers (2023-12-19T16:14:01Z) - Quantum Coherent Control of a Single Molecular-Polariton Rotation [2.2482144023488346]
We present a combined analytical and numerical study for coherent terahertz control of a single molecular polariton.
The presence of a cavity strongly modifies the post-pulse orientation of the polariton, making it difficult to obtain its maximal degree of orientation.
This work offers a new strategy to study rotational dynamics in the strong-coupling regime and provides a method for complete quantum coherent control of a single molecular polariton.
arXiv Detail & Related papers (2022-12-22T12:37:55Z) - Real-time equation-of-motion CC cumulant and CC Green's function
simulations of photoemission spectra of water and water dimer [54.44073730234714]
We discuss results obtained with the real-time equation-of-motion CC cumulant approach.
We compare the ionization potentials obtained with these methods for the valence region.
We analyze unique features of the spectral functions, associated with the position of satellite peaks, obtained with the RT-EOM-CC and CCGF methods.
arXiv Detail & Related papers (2022-05-27T18:16:30Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z) - Deterministic single-atom source of quasi-superradiant $N$-photon pulses [62.997667081978825]
Scheme operates with laser and cavity fields detuned from the atomic transition by much more than the excited-state hyperfine splitting.
This enables reduction of the dynamics to that of a simple, cavity-damped Tavis-Cummings model with the collective spin determined by the total angular momentum of the ground hyperfine level.
arXiv Detail & Related papers (2020-12-01T03:55:27Z) - Exciton-trion dynamics of a single molecule in a radio-frequency cavity [0.0]
Trions and neutral excitons can be efficiently induced in single molecules by tip-enhanced spectromicroscopic techniques.
Here, we investigate exciton-trion dynamics by phase fluorometry, combining radio-frequency scanning tunnelling luminescence with time-resolved single photon detection.
We generate excitons and trions in single Zinc Phthalocyanine (ZnPc) molecules on NaCl/Ag(111), determine their dynamics and trace the evolution of the system in the picosecond range with atomic resolution.
arXiv Detail & Related papers (2020-11-28T09:17:34Z) - Understanding Radiative Transitions and Relaxation Pathways in
Plexcitons [0.0]
Molecular aggregates on plasmonic nanoparticles have emerged as attractive systems for the studies of cavity quantum electrodynamics.
We show that while the metal is responsible for destroying the coherence of the excitation, the molecular aggregate significantly participates in dissipating the energy.
We show that the dynamics beyond a few femtoseconds has to be cast in the language of hot electron distributions and excitons.
arXiv Detail & Related papers (2020-02-13T17:20:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.