Exciton-trion dynamics of a single molecule in a radio-frequency cavity
- URL: http://arxiv.org/abs/2011.14093v1
- Date: Sat, 28 Nov 2020 09:17:34 GMT
- Title: Exciton-trion dynamics of a single molecule in a radio-frequency cavity
- Authors: Ji\v{r}\'i Dole\v{z}al, Sofia Canola, Pablo Merino, Martin \v{S}vec
- Abstract summary: Trions and neutral excitons can be efficiently induced in single molecules by tip-enhanced spectromicroscopic techniques.
Here, we investigate exciton-trion dynamics by phase fluorometry, combining radio-frequency scanning tunnelling luminescence with time-resolved single photon detection.
We generate excitons and trions in single Zinc Phthalocyanine (ZnPc) molecules on NaCl/Ag(111), determine their dynamics and trace the evolution of the system in the picosecond range with atomic resolution.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Charged optical excitations (trions) generated by charge carrier injection
are crucial for emerging optoelectronic technologies as they can be produced
and manipulated by electric fields. Trions and neutral excitons can be
efficiently induced in single molecules by means of tip-enhanced
spectromicroscopic techniques. However, little is known of the exciton-trion
dynamics at single molecule level as this requires methods permitting
simultaneous sub-nanometer and sub-nanosecond characterization. Here, we
investigate exciton-trion dynamics by phase fluorometry, combining
radio-frequency modulated scanning tunnelling luminescence with time-resolved
single photon detection. We generate excitons and trions in single Zinc
Phthalocyanine (ZnPc) molecules on NaCl/Ag(111), determine their dynamics and
trace the evolution of the system in the picosecond range with atomic
resolution. In addition, we explore dependence of effective lifetimes on bias
voltage and propose a conversion of neutral excitons into trions via charge
capture as the primary mechanism of trion formation.
Related papers
- Dynamics of moire trion and its valley polarization in microfabricated
WSe2/MoSe2 heterobilayer [0.36944296923226316]
We propose a microfabrication technique based on focused Ga+ ion beams, which enables us to control the number of peaks originating from the moire potential.
By taking advantage of this approach, we reveal emissions from a single moire exciton and charged moire exciton (trion) under electrostatic doping conditions.
arXiv Detail & Related papers (2023-01-26T10:02:37Z) - Attosecond imaging of photo-induced dynamics in molecules using
time-resolved photoelectron momentum microscopy [0.0]
We theoretically analyze how spatial and temporal dependence of charge migration in a pentacene molecule can be followed by means of time-resolved photoelectron microscopy.
We demonstrate that the excited-state dynamics of a neutral pentacene molecule in the real space map onto unique features of photoelectron momentum maps.
arXiv Detail & Related papers (2023-01-16T14:47:51Z) - Bipolar single-molecule electroluminescence and electrofluorochromism [50.591267188664666]
We investigate cationic and anionic fluorescence of individual zinc phthalocyanine (ZnPc) molecules adsorbed on ultrathin NaCl films on Ag (111) by using STML.
They depend on the tip-sample bias polarity and appear at threshold voltages that are correlated with the onset energies of particular molecular orbitals.
arXiv Detail & Related papers (2022-10-20T09:22:45Z) - Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe [55.41644538483948]
We show a new type of single photon emitter with potential electron spin qubit based on Cl impurities inSe.
Results suggest single Cl impurities are suitable as single photon source with potential photonic interface.
arXiv Detail & Related papers (2022-03-11T04:29:21Z) - Indirect exciton-phonon dynamics in MoS2 revealed by ultrafast electron
diffraction [5.782172606425799]
Transition metal dichalcogenides layered nano-crystals are emerging as promising candidates for next-generation optoelectronic and quantum devices.
Here, we use ultrafast electron diffraction and ab initio calculations to investigate the many-body structural dynamics following nearly-resonant excitation of low-energy indirect excitons in MoS2.
Our results highlight the strong selectivity of phononic excitations directly associated with the specific indirect-exciton nature of the wavelength-dependent electronic transitions triggered in the system.
arXiv Detail & Related papers (2021-12-30T23:23:08Z) - Rapidly enhanced spin polarization injection in an optically pumped spin
ratchet [49.1301457567913]
We report on a strategy to boost the spin injection rate by exploiting electrons that can be rapidly polarized.
We demonstrate this in a model system of Nitrogen Vacancy center electrons injecting polarization into a bath of 13C nuclei in diamond.
Through a spin-ratchet polarization transfer mechanism, we show boosts in spin injection rates by over two orders of magnitude.
arXiv Detail & Related papers (2021-12-14T08:23:10Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Vectorial polaritons in the quantum motion of a levitated nanosphere [0.0]
We show the generation of phonon-polaritons in the quantum motion of an optically-levitated nanosphere.
Our results pave the way to novel protocols for quantum information transfer between photonic and phononic components.
arXiv Detail & Related papers (2020-12-30T18:26:28Z) - Strongly entangled system-reservoir dynamics with multiphoton pulses
beyond the two-excitation limit: Exciting the atom-photon bound state [62.997667081978825]
We study the non-Markovian feedback dynamics of a two-level system interacting with the electromagnetic field inside a semi-infinite waveguide.
We compare the trapped excitation for an initially excited quantum emitter and an emitter prepared via quantized pulses containing up to four photons.
arXiv Detail & Related papers (2020-11-07T12:56:16Z) - Optical projection and spatial separation of spin entangled
triplet-pairs from the S1 (21Ag-) state of pi-conjugated systems [40.96261204117952]
We experimentally demonstrate that S1 (21Ag-) is a superposition state with strong contributions from spin-entangled pairs of triplet excitons (1(TT))
We show that optical manipulation of the S1 (21Ag-) wavefunction using triplet absorption transitions allows selective projection of the 1(TT) component into a manifold of spatially separated triplet-pairs with lifetimes enhanced by up to one order of magnitude.
Our results provide a unified picture of 21Ag-states in pi-conjugated materials and open new routes to exploit their dynamics in singlet fission, photobiology and for the
arXiv Detail & Related papers (2020-02-27T22:09:43Z) - Understanding Radiative Transitions and Relaxation Pathways in
Plexcitons [0.0]
Molecular aggregates on plasmonic nanoparticles have emerged as attractive systems for the studies of cavity quantum electrodynamics.
We show that while the metal is responsible for destroying the coherence of the excitation, the molecular aggregate significantly participates in dissipating the energy.
We show that the dynamics beyond a few femtoseconds has to be cast in the language of hot electron distributions and excitons.
arXiv Detail & Related papers (2020-02-13T17:20:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.