Siamese Representation Learning for Unsupervised Relation Extraction
- URL: http://arxiv.org/abs/2310.00552v1
- Date: Sun, 1 Oct 2023 02:57:43 GMT
- Title: Siamese Representation Learning for Unsupervised Relation Extraction
- Authors: Guangxin Zhang, Shu Chen
- Abstract summary: Unsupervised relation extraction (URE) aims at discovering underlying relations between named entity pairs from open-domain plain text.
Existing URE models utilizing contrastive learning, which attract positive samples and repulse negative samples to promote better separation, have got decent effect.
We propose Siamese Representation Learning for Unsupervised Relation Extraction -- a novel framework to simply leverage positive pairs to representation learning.
- Score: 5.776369192706107
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised relation extraction (URE) aims at discovering underlying
relations between named entity pairs from open-domain plain text without prior
information on relational distribution. Existing URE models utilizing
contrastive learning, which attract positive samples and repulse negative
samples to promote better separation, have got decent effect. However,
fine-grained relational semantic in relationship makes spurious negative
samples, damaging the inherent hierarchical structure and hindering
performances. To tackle this problem, we propose Siamese Representation
Learning for Unsupervised Relation Extraction -- a novel framework to simply
leverage positive pairs to representation learning, possessing the capability
to effectively optimize relation representation of instances and retain
hierarchical information in relational feature space. Experimental results show
that our model significantly advances the state-of-the-art results on two
benchmark datasets and detailed analyses demonstrate the effectiveness and
robustness of our proposed model on unsupervised relation extraction.
Related papers
- Synergistic Anchored Contrastive Pre-training for Few-Shot Relation
Extraction [4.7220779071424985]
Few-shot Relation Extraction (FSRE) aims to extract facts from a sparse set of labeled corpora.
Recent studies have shown promising results in FSRE by employing Pre-trained Language Models.
We introduce a novel synergistic anchored contrastive pre-training framework.
arXiv Detail & Related papers (2023-12-19T10:16:24Z) - Entity or Relation Embeddings? An Analysis of Encoding Strategies for Relation Extraction [19.019881161010474]
Relation extraction is essentially a text classification problem, which can be tackled by fine-tuning a pre-trained language model (LM)
Existing approaches therefore solve the problem in an indirect way: they fine-tune an LM to learn embeddings of the head and tail entities, and then predict the relationship from these entity embeddings.
Our hypothesis in this paper is that relation extraction models can be improved by capturing relationships in a more direct way.
arXiv Detail & Related papers (2023-12-18T09:58:19Z) - Sparse Relational Reasoning with Object-Centric Representations [78.83747601814669]
We investigate the composability of soft-rules learned by relational neural architectures when operating over object-centric representations.
We find that increasing sparsity, especially on features, improves the performance of some models and leads to simpler relations.
arXiv Detail & Related papers (2022-07-15T14:57:33Z) - HiURE: Hierarchical Exemplar Contrastive Learning for Unsupervised
Relation Extraction [60.80849503639896]
Unsupervised relation extraction aims to extract the relationship between entities from natural language sentences without prior information on relational scope or distribution.
We propose a novel contrastive learning framework named HiURE, which has the capability to derive hierarchical signals from relational feature space using cross hierarchy attention.
Experimental results on two public datasets demonstrate the advanced effectiveness and robustness of HiURE on unsupervised relation extraction when compared with state-of-the-art models.
arXiv Detail & Related papers (2022-05-04T17:56:48Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
We propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for relation extraction.
Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately.
arXiv Detail & Related papers (2021-09-24T17:37:35Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
We propose a cross-sample adversarial debiasing (CSAD) method to remove the bias information misused by the target task.
The correlation measurement plays a critical role in adversarial debiasing and is conducted by a cross-sample neural mutual information estimator.
We conduct thorough experiments on publicly available datasets to validate the advantages of the proposed method over state-of-the-art approaches.
arXiv Detail & Related papers (2021-08-11T21:17:02Z) - Adjacency List Oriented Relational Fact Extraction via Adaptive
Multi-task Learning [24.77542721790553]
We show that all of the fact extraction models can be organized according to a graph-oriented analytical perspective.
An efficient model, aDjacency lIst oRientational faCT (Direct), is proposed based on this analytical framework.
arXiv Detail & Related papers (2021-06-03T02:57:08Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z) - SelfORE: Self-supervised Relational Feature Learning for Open Relation
Extraction [60.08464995629325]
Open-domain relation extraction is the task of extracting open-domain relation facts from natural language sentences.
We proposed a self-supervised framework named SelfORE, which exploits weak, self-supervised signals.
Experimental results on three datasets show the effectiveness and robustness of SelfORE.
arXiv Detail & Related papers (2020-04-06T07:23:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.