Event-Driven Implementation of a Physical Reservoir Computing Framework for superficial EMG-based Gesture Recognition
- URL: http://arxiv.org/abs/2503.13492v1
- Date: Mon, 10 Mar 2025 17:18:14 GMT
- Title: Event-Driven Implementation of a Physical Reservoir Computing Framework for superficial EMG-based Gesture Recognition
- Authors: Yuqi Ding, Elisa Donati, Haobo Li, Hadi Heidari,
- Abstract summary: This paper explores a novel neuromorphic implementation approach for gesture recognition by extracting spiking information from surface electromyography (sEMG) data in an event-driven manner.<n>The network was designed by implementing a simple-structured and hardware-friendly Physical Reservoir Computing framework called Rotating Neuron Reservoir (RNR) within the domain of Spiking neural network (SNN)<n>The proposed system was validated by an open-access large-scale sEMG database and achieved an average classification accuracy of 74.6% and 80.3%.
- Score: 2.222098162797332
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wearable health devices have a strong demand in real-time biomedical signal processing. However traditional methods often require data transmission to centralized processing unit with substantial computational resources after collecting it from edge devices. Neuromorphic computing is an emerging field that seeks to design specialized hardware for computing systems inspired by the structure, function, and dynamics of the human brain, offering significant advantages in latency and power consumption. This paper explores a novel neuromorphic implementation approach for gesture recognition by extracting spatiotemporal spiking information from surface electromyography (sEMG) data in an event-driven manner. At the same time, the network was designed by implementing a simple-structured and hardware-friendly Physical Reservoir Computing (PRC) framework called Rotating Neuron Reservoir (RNR) within the domain of Spiking neural network (SNN). The spiking RNR (sRNR) is promising to pipeline an innovative solution to compact embedded wearable systems, enabling low-latency, real-time processing directly at the sensor level. The proposed system was validated by an open-access large-scale sEMG database and achieved an average classification accuracy of 74.6\% and 80.3\% using a classical machine learning classifier and a delta learning rule algorithm respectively. While the delta learning rule could be fully spiking and implementable on neuromorphic chips, the proposed gesture recognition system demonstrates the potential for near-sensor low-latency processing.
Related papers
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
Neuromorphic computing uses spiking neural networks (SNNs) to perform inference tasks.<n> embedding a small payload within each spike exchanged between spiking neurons can enhance inference accuracy without increasing energy consumption.<n> split computing - where an SNN is partitioned across two devices - is a promising solution.<n>This paper presents the first comprehensive study of a neuromorphic wireless split computing architecture that employs multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - EventF2S: Asynchronous and Sparse Spiking AER Framework using
Neuromorphic-Friendly Algorithm [2.469315273321826]
Spiking Neural Network (SNN) has become the inherent choice for AER data processing.
We introduce a brain-inspired AER-SNN object recognition solution, which includes a data encoder integrated with a First-To-Spike recognition network.
arXiv Detail & Related papers (2024-01-28T19:42:05Z) - DYNAP-SE2: a scalable multi-core dynamic neuromorphic asynchronous
spiking neural network processor [2.9175555050594975]
We present a brain-inspired platform for prototyping real-time event-based Spiking Neural Networks (SNNs)
The system proposed supports the direct emulation of dynamic and realistic neural processing phenomena such as short-term plasticity, NMDA gating, AMPA diffusion, homeostasis, spike frequency adaptation, conductance-based dendritic compartments and spike transmission delays.
The flexibility to emulate different biologically plausible neural networks, and the chip's ability to monitor both population and single neuron signals in real-time, allow to develop and validate complex models of neural processing for both basic research and edge-computing applications.
arXiv Detail & Related papers (2023-10-01T03:48:16Z) - Neuromorphic Computing with AER using Time-to-Event-Margin Propagation [7.730429080477441]
We show how causal temporal primitives like delay, triggering, and sorting inherent in the AER protocol can be exploited for scalable neuromorphic computing.
The proposed TEMP-based AER architecture is fully asynchronous and relies on interconnect delays for memory and computing.
As a proof-of-concept, we show that a trained TEMP-based convolutional neural network (CNN) can demonstrate an accuracy greater than 99% on the MNIST dataset.
arXiv Detail & Related papers (2023-04-27T02:01:54Z) - ETLP: Event-based Three-factor Local Plasticity for online learning with
neuromorphic hardware [105.54048699217668]
We show a competitive performance in accuracy with a clear advantage in the computational complexity for Event-Based Three-factor Local Plasticity (ETLP)
We also show that when using local plasticity, threshold adaptation in spiking neurons and a recurrent topology are necessary to learntemporal patterns with a rich temporal structure.
arXiv Detail & Related papers (2023-01-19T19:45:42Z) - Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
Networks on Edge NPUs [74.83613252825754]
"smart ecosystems" are being formed where sensing happens concurrently rather than standalone.
This is shifting the on-device inference paradigm towards deploying neural processing units (NPUs) at the edge.
We propose a novel early-exit scheduling that allows preemption at run time to account for the dynamicity introduced by the arrival and exiting processes.
arXiv Detail & Related papers (2022-09-27T15:04:01Z) - An intertwined neural network model for EEG classification in
brain-computer interfaces [0.6696153817334769]
The brain computer interface (BCI) is a nonstimulatory direct and occasionally bidirectional communication link between the brain and a computer or an external device.
We present a deep neural network architecture specifically engineered to provide state-of-the-art performance in multiclass motor imagery classification.
arXiv Detail & Related papers (2022-08-04T09:00:34Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Deep Metric Learning with Locality Sensitive Angular Loss for
Self-Correcting Source Separation of Neural Spiking Signals [77.34726150561087]
We propose a methodology based on deep metric learning to address the need for automated post-hoc cleaning and robust separation filters.
We validate this method with an artificially corrupted label set based on source-separated high-density surface electromyography recordings.
This approach enables a neural network to learn to accurately decode neurophysiological time series using any imperfect method of labelling the signal.
arXiv Detail & Related papers (2021-10-13T21:51:56Z) - An adaptive cognitive sensor node for ECG monitoring in the Internet of
Medical Things [0.7646713951724011]
The Internet of Medical Things (IoMT) paradigm is becoming mainstream in multiple clinical trials and healthcare procedures.
In this work, we explore the implementation of cognitive data analysis algorithm on resource-constrained computing platforms.
We have assessed our approach on a use-case using a convolutional neural network to classify electrocardiogram traces.
arXiv Detail & Related papers (2021-06-11T16:49:10Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.