Image Data Hiding in Neural Compressed Latent Representations
- URL: http://arxiv.org/abs/2310.00568v1
- Date: Sun, 1 Oct 2023 03:53:28 GMT
- Title: Image Data Hiding in Neural Compressed Latent Representations
- Authors: Chen-Hsiu Huang, Ja-Ling Wu
- Abstract summary: We propose an end-to-end learned image data hiding framework that embeds and extracts secrets in the latent representations of a generic neural compressor.
Compared to existing techniques, our framework offers superior image secrecy and competitive watermarking in the compressed domain.
- Score: 1.0878040851638
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We propose an end-to-end learned image data hiding framework that embeds and
extracts secrets in the latent representations of a generic neural compressor.
By leveraging a perceptual loss function in conjunction with our proposed
message encoder and decoder, our approach simultaneously achieves high image
quality and high bit accuracy. Compared to existing techniques, our framework
offers superior image secrecy and competitive watermarking robustness in the
compressed domain while accelerating the embedding speed by over 50 times.
These results demonstrate the potential of combining data hiding techniques and
neural compression and offer new insights into developing neural compression
techniques and their applications.
Related papers
- Streaming Neural Images [56.41827271721955]
Implicit Neural Representations (INRs) are a novel paradigm for signal representation that have attracted considerable interest for image compression.
In this work, we explore the critical yet overlooked limiting factors of INRs, such as computational cost, unstable performance, and robustness.
arXiv Detail & Related papers (2024-09-25T17:51:20Z) - Rate-Distortion-Cognition Controllable Versatile Neural Image Compression [47.72668401825835]
We propose a rate-distortion-cognition controllable versatile image compression method.
Our method yields satisfactory ICM performance and flexible Rate-DistortionCognition controlling.
arXiv Detail & Related papers (2024-07-16T13:17:51Z) - Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
This study presents an enhanced neural compression method designed for optimal visual fidelity.
We have trained our model with a sophisticated semantic ensemble loss, integrating Charbonnier loss, perceptual loss, style loss, and a non-binary adversarial loss.
Our empirical findings demonstrate that this approach significantly improves the statistical fidelity of neural image compression.
arXiv Detail & Related papers (2024-01-25T08:11:27Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
Adversarial attacks can readily disrupt the image classification system, revealing the vulnerability of DNN-based recognition tasks.
We introduce a new pipeline that targets image classification models that utilize learned image compressors as pre-processing modules.
arXiv Detail & Related papers (2024-01-06T03:03:28Z) - Streaming Lossless Volumetric Compression of Medical Images Using Gated
Recurrent Convolutional Neural Network [0.0]
This paper introduces a hardware-friendly streaming lossless volumetric compression framework.
We propose a gated recurrent convolutional neural network that combines diverse convolutional structures and fusion gate mechanisms.
Our method exhibits robust generalization ability and competitive compression speed.
arXiv Detail & Related papers (2023-11-27T07:19:09Z) - A Deep Learning-based Compression and Classification Technique for Whole
Slide Histopathology Images [0.31498833540989407]
We build an ensemble of neural networks that enables a compressive autoencoder in a supervised fashion to retain a denser and more meaningful representation of the input histology images.
We test the compressed images using transfer learning-based classifiers and show that they provide promising accuracy and classification performance.
arXiv Detail & Related papers (2023-05-11T22:20:05Z) - Estimating the Resize Parameter in End-to-end Learned Image Compression [50.20567320015102]
We describe a search-free resizing framework that can further improve the rate-distortion tradeoff of recent learned image compression models.
Our results show that our new resizing parameter estimation framework can provide Bjontegaard-Delta rate (BD-rate) improvement of about 10% against leading perceptual quality engines.
arXiv Detail & Related papers (2022-04-26T01:35:02Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.