Conceptual study of a two-layer silicon pixel detector to tag the
passage of muons from cosmic sources through quantum processors
- URL: http://arxiv.org/abs/2310.00577v2
- Date: Thu, 7 Dec 2023 23:05:42 GMT
- Title: Conceptual study of a two-layer silicon pixel detector to tag the
passage of muons from cosmic sources through quantum processors
- Authors: Ulascan Sarica
- Abstract summary: In quantum computing, the contribution of muons from cosmic sources can constitute a significant fraction of these interactions.
A conceptual study of a two-layer silicon pixel detector to tag their hits on a solid-state quantum processor is presented.
We propose a novel research program that could allow the development of silicon pixel detectors that are fast enough to provide input to quantum error correction algorithms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies in quantum computing have shown that quantum error correction
with large numbers of physical qubits are limited by ionizing radiation from
high-energy particles. Depending on the physical setup of the quantum
processor, the contribution of muons from cosmic sources can constitute a
significant fraction of these interactions. As most of these muons are
difficult to stop, we perform a conceptual study of a two-layer silicon pixel
detector to tag their hits on a solid-state quantum processor instead. With a
typical dilution refrigerator geometry model, we find that efficiencies greater
than 50% are most likely to be achieved if at least one of the layers is
operated at the deep-cryogenic (<1 K) flanges of the refrigerator. Following
this finding, we further propose a novel research program that could allow the
development of silicon pixel detectors that are fast enough to provide input to
quantum error correction algorithms, can operate at deep-cryogenic
temperatures, and have very low power consumption.
Related papers
- Hyperbolic Quantum Processor [0.0]
We show that long-range qubit entanglement can be achieved when qubit interactions are mediated by optical polariton waves in a hyperbolic material.
The resulting quantum gate fidelity that exceeds 99%, can be achieved with the use of qubits based on well known deep donors in silicon.
arXiv Detail & Related papers (2024-12-18T17:48:21Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Toward coherent quantum computation of scattering amplitudes with a
measurement-based photonic quantum processor [0.0]
We discuss the feasibility of using quantum optical simulation for studying scattering observables that are presently inaccessible via lattice QCD.
We show that recent progress in measurement-based photonic quantum computing can be leveraged to provide deterministic generation of required exotic gates.
arXiv Detail & Related papers (2023-12-19T21:36:07Z) - Quantum Enhancement in Dark Matter Detection with Quantum Computation [0.0]
We propose a novel method to significantly enhance the signal rate in qubit-based dark matter detection experiments.
We show that the signal rate scales proportionally to $n_rm q2$, with $n_rm q$ being the number of sensor qubits.
In the dark matter detection with a substantial number of sensor qubits, a significant increase in the signal rate can be expected.
arXiv Detail & Related papers (2023-11-17T09:36:14Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - Proof-of-concept Quantum Simulator based on Molecular Spin Qudits [39.28601213393797]
We show the first prototype quantum simulator based on an ensemble of molecular qudits and a radiofrequency broadband spectrometer.
Results represent an important step towards the actual use of molecular spin qudits in quantum technologies.
arXiv Detail & Related papers (2023-09-11T16:33:02Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - Modeling Quantum Enhanced Sensing on a Quantum Computer [0.0]
Quantum computers allow for direct simulation of the quantum interference and entanglement used in modern interferometry experiments.
We present two quantum circuit models that demonstrate the role of quantum mechanics and entanglement in modern precision sensors.
arXiv Detail & Related papers (2022-09-16T22:29:16Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Counteracting dephasing in Molecular Nanomagnets by optimized qudit
encodings [60.1389381016626]
Molecular Nanomagnets may enable the implementation of qudit-based quantum error-correction codes.
A microscopic understanding of the errors corrupting the quantum information encoded in a molecular qudit is essential.
arXiv Detail & Related papers (2021-03-16T19:21:42Z) - Scalable multiphoton quantum metrology with neither pre- nor
post-selected measurements [0.0]
We experimentally demonstrate a scalable protocol for quantum-enhanced optical phase estimation.
The robustness of two-mode squeezed vacuum states against loss allows us to outperform schemes based on N00N states.
Our work is important for quantum technologies that rely on multiphoton interference.
arXiv Detail & Related papers (2020-11-04T18:11:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.