Quantum Enhancement in Dark Matter Detection with Quantum Computation
- URL: http://arxiv.org/abs/2311.10413v2
- Date: Tue, 30 Jul 2024 03:25:46 GMT
- Title: Quantum Enhancement in Dark Matter Detection with Quantum Computation
- Authors: Shion Chen, Hajime Fukuda, Toshiaki Inada, Takeo Moroi, Tatsumi Nitta, Thanaporn Sichanugrist,
- Abstract summary: We propose a novel method to significantly enhance the signal rate in qubit-based dark matter detection experiments.
We show that the signal rate scales proportionally to $n_rm q2$, with $n_rm q$ being the number of sensor qubits.
In the dark matter detection with a substantial number of sensor qubits, a significant increase in the signal rate can be expected.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel method to significantly enhance the signal rate in qubit-based dark matter detection experiments with the help of quantum interference. Various quantum sensors possess ideal properties for detecting wave-like dark matter, and qubits, commonly employed in quantum computers, are excellent candidates for dark matter detectors. We demonstrate that, by designing an appropriate quantum circuit to manipulate the qubits, the signal rate scales proportionally to $n_{\rm q}^2$, with $n_{\rm q}$ being the number of sensor qubits, rather than linearly with $n_{\rm q}$. Consequently, in the dark matter detection with a substantial number of sensor qubits, a significant increase in the signal rate can be expected. We provide a specific example of a quantum circuit that achieves this enhancement by coherently combining the phase evolution in each individual qubit due to its interaction with dark matter. We also demonstrate that the circuit is fault tolerant to de-phasing noises, a critical quantum noise source in quantum computers. The enhancement mechanism proposed here is applicable to various modalities for quantum computers, provided that the quantum operations relevant to enhancing the dark matter signal can be applied to these devices.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Trade-off between Noise and Banding in a Quantum Adder with Qudits [0.0]
Quantum addition based on the quantum Fourier transform can be an integral part of a quantum circuit.
We analytically prove an upper bound on the number of the controlled rotation gates required to accomplish the quantum addition up to an arbitrary defect.
We demonstrate that utilizing magnetic fields to prepare an initial state that evolves according to a one-dimensional spin chain can be a potential technique to implement quantum addition circuits in many-body systems.
arXiv Detail & Related papers (2023-10-17T18:22:23Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Quantum CDMA Communication Systems [9.992810060555813]
We introduce and discuss the fundamental principles of a novel quantum CDMA technique based on spectrally encoding and decoding of continuous-mode quantum light pulses.
We present the mathematical models of various QCDMA modules that are fundamental in describing an ideal and typical QCDMA system.
Our mathematical model is valuable in the signal design and data modulations of point-to-point quantum communications, quantum pulse shaping, and quantum radar signals and systems where the inputs are continuous mode quantum signals.
arXiv Detail & Related papers (2021-06-18T10:05:53Z) - Numerical hardware-efficient variational quantum simulation of a soliton
solution [0.0]
We discuss the capabilities of quantum algorithms with special attention paid to a hardware-efficient variational eigensolver.
A delicate interplay between magnetic interactions allows one to stabilize a chiral state that destroys the homogeneity of magnetic ordering.
We argue that, while being capable of correctly reproducing a uniform magnetic configuration, the hardware-efficient ansatz meets difficulties in providing a detailed description to a noncollinear magnetic structure.
arXiv Detail & Related papers (2021-05-13T11:58:18Z) - Demonstration of quantum advantage by a joint detection receiver for
optical communications using quantum belief propagation on a trapped-ion
device [0.7758302353877525]
We present an experimental realization of a quantum joint detection receiver for binary phase shift keying codewords of a 3-bit linear tree code.
The receiver, translated to a quantum circuit, was experimentally implemented on a trapped-ion device.
We provide an experimental framework that surpasses the quantum limit on the minimum average decoding error probability.
arXiv Detail & Related papers (2021-02-25T18:05:31Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - On the capability of a class of quantum sensors [10.894655702718783]
We investigate the capability of a class of quantum sensors which consist of either a single qubit or two qubits.
A quantum sensor is coupled to a spin chain system to extract information of unknown parameters in the system.
arXiv Detail & Related papers (2020-03-19T10:56:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.