NoxTrader: LSTM-Based Stock Return Momentum Prediction for Quantitative
Trading
- URL: http://arxiv.org/abs/2310.00747v2
- Date: Tue, 31 Oct 2023 11:32:52 GMT
- Title: NoxTrader: LSTM-Based Stock Return Momentum Prediction for Quantitative
Trading
- Authors: Hsiang-Hui Liu, Han-Jay Shu, Wei-Ning Chiu
- Abstract summary: NoxTrader is a sophisticated system designed for portfolio construction and trading execution.
The underlying learning process of NoxTrader is rooted in the assimilation of valuable insights derived from historical trading data.
Our rigorous feature engineering and careful selection of prediction targets enable us to generate prediction data with an impressive correlation range between 0.65 and 0.75.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce NoxTrader, a sophisticated system designed for portfolio
construction and trading execution with the primary objective of achieving
profitable outcomes in the stock market, specifically aiming to generate
moderate to long-term profits. The underlying learning process of NoxTrader is
rooted in the assimilation of valuable insights derived from historical trading
data, particularly focusing on time-series analysis due to the nature of the
dataset employed. In our approach, we utilize price and volume data of US stock
market for feature engineering to generate effective features, including Return
Momentum, Week Price Momentum, and Month Price Momentum. We choose the Long
Short-Term Memory (LSTM)model to capture continuous price trends and implement
dynamic model updates during the trading execution process, enabling the model
to continuously adapt to the current market trends. Notably, we have developed
a comprehensive trading backtesting system - NoxTrader, which allows us to
manage portfolios based on predictive scores and utilize custom evaluation
metrics to conduct a thorough assessment of our trading performance. Our
rigorous feature engineering and careful selection of prediction targets enable
us to generate prediction data with an impressive correlation range between
0.65 and 0.75. Finally, we monitor the dispersion of our prediction data and
perform a comparative analysis against actual market data. Through the use of
filtering techniques, we improved the initial -60% investment return to 325%.
Related papers
- Trading through Earnings Seasons using Self-Supervised Contrastive Representation Learning [1.6574413179773761]
Contrastive Earnings Transformer (CET) is a self-supervised learning approach rooted in Contrastive Predictive Coding (CPC)
Our research delves deep into the intricacies of stock data, evaluating how various models handle the rapidly changing relevance of earnings data over time and over different sectors.
CET's foundation on CPC allows for a nuanced understanding, facilitating consistent stock predictions even as the earnings data ages.
arXiv Detail & Related papers (2024-09-25T22:09:59Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - ALERTA-Net: A Temporal Distance-Aware Recurrent Networks for Stock
Movement and Volatility Prediction [20.574163667057476]
We harness the power of social media data, a rich source of public sentiment, to enhance the accuracy of stock market predictions.
We pioneer an approach that integrates sentiment analysis, macroeconomic indicators, search engine data, and historical prices within a multi-attention deep learning model.
We showcase the state-of-the-art performance of our proposed model using a dataset, specifically curated by us, for predicting stock market movements and volatility.
arXiv Detail & Related papers (2023-10-28T13:31:39Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Joint Latent Topic Discovery and Expectation Modeling for Financial
Markets [45.758436505779386]
We present a groundbreaking framework for financial market analysis.
This approach is the first to jointly model investor expectations and automatically mine latent stock relationships.
Our model consistently achieves an annual return exceeding 10%.
arXiv Detail & Related papers (2023-06-01T01:36:51Z) - DNN-ForwardTesting: A New Trading Strategy Validation using Statistical
Timeseries Analysis and Deep Neural Networks [0.6882042556551609]
We propose a new trading strategy, called DNN-forwardtesting, that determines the strategy to apply by testing it on the possible future predicted by a deep neural network.
Our trading system calculates the most effective technical indicator by applying it to the DNNs predictions and uses such indicator to guide its trades.
arXiv Detail & Related papers (2022-10-20T19:00:59Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Profitability Analysis in Stock Investment Using an LSTM-Based Deep
Learning Model [1.2891210250935146]
We present a deep learning-based regression model built on a long-and-short-term memory network (LSTM) network.
It extracts historical stock prices based on a stock's ticker name for a specified pair of start and end dates, and forecasts the future stock prices.
We deploy the model on 75 significant stocks chosen from 15 critical sectors of the Indian stock market.
arXiv Detail & Related papers (2021-04-06T11:09:51Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
We have explored the relationship between sentiment extracted from financial news and tweets and FTSE100 movements.
The sentiment captured from news headlines could be used as a signal to predict market returns; the same does not apply for volatility.
We developed an accurate classifier for the prediction of market volatility in response to the arrival of new information.
arXiv Detail & Related papers (2020-12-10T01:15:48Z) - A Deep Learning Framework for Predicting Digital Asset Price Movement
from Trade-by-trade Data [20.392440676633573]
This paper presents a framework that predicts price movement of cryptocurrencies from trade-by-trade data.
The model is trained to achieve high performance on nearly a year of trade-by-trade data.
In a realistic trading simulation setting, the prediction made by the model could be easily monetized.
arXiv Detail & Related papers (2020-10-11T10:42:02Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.