The Map Equation Goes Neural: Mapping Network Flows with Graph Neural Networks
- URL: http://arxiv.org/abs/2310.01144v4
- Date: Tue, 10 Dec 2024 19:38:34 GMT
- Title: The Map Equation Goes Neural: Mapping Network Flows with Graph Neural Networks
- Authors: Christopher Blöcker, Chester Tan, Ingo Scholtes,
- Abstract summary: Community detection is an essential tool for unsupervised data exploration and revealing the organisational structure of networked systems.
We consider the map equation, a popular information-theoretic objective function for unsupervised community detection, and express it in differentiable tensor form for gradient through descent.
Our formulation turns the map equation compatible with any neural network architecture, enables end-to-end learning, incorporates node features, and chooses the optimal number of clusters automatically.
- Score: 0.716879432974126
- License:
- Abstract: Community detection is an essential tool for unsupervised data exploration and revealing the organisational structure of networked systems. With a long history in network science, community detection typically relies on objective functions, optimised with custom-tailored search algorithms, but often without leveraging recent advances in deep learning. Recently, first works have started incorporating such objectives into loss functions for deep graph clustering and pooling. We consider the map equation, a popular information-theoretic objective function for unsupervised community detection, and express it in differentiable tensor form for optimisation through gradient descent. Our formulation turns the map equation compatible with any neural network architecture, enables end-to-end learning, incorporates node features, and chooses the optimal number of clusters automatically, all without requiring explicit regularisation. Applied to unsupervised graph clustering tasks, we achieve competitive performance against state-of-the-art deep graph clustering baselines in synthetic and real-world datasets.
Related papers
- Node Classification via Semantic-Structural Attention-Enhanced Graph Convolutional Networks [0.9463895540925061]
We introduce the semantic-structural attention-enhanced graph convolutional network (SSA-GCN)
It not only models the graph structure but also extracts generalized unsupervised features to enhance classification performance.
Our experiments on the Cora and CiteSeer datasets demonstrate the performance improvements achieved by our proposed method.
arXiv Detail & Related papers (2024-03-24T06:28:54Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - Redundancy-Free Self-Supervised Relational Learning for Graph Clustering [13.176413653235311]
We propose a novel self-supervised deep graph clustering method named Redundancy-Free Graph Clustering (R$2$FGC)
It extracts the attribute- and structure-level relational information from both global and local views based on an autoencoder and a graph autoencoder.
Our experiments are performed on widely used benchmark datasets to validate the superiority of our R$2$FGC over state-of-the-art baselines.
arXiv Detail & Related papers (2023-09-09T06:18:50Z) - Topological Pooling on Graphs [24.584372324701885]
Graph neural networks (GNNs) have demonstrated a significant success in various graph learning tasks.
We propose a novel topological pooling layer and witness complex-based topological embedding mechanism.
We show that Wit-TopoPool significantly outperforms all competitors across all datasets.
arXiv Detail & Related papers (2023-03-25T19:30:46Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
We propose an end-to-end structural temporal Graph Neural Network model for detecting anomalous edges in dynamic graphs.
In particular, we first extract the $h$-hop enclosing subgraph centered on the target edge and propose the node labeling function to identify the role of each node in the subgraph.
Based on the extracted features, we utilize Gated recurrent units (GRUs) to capture the temporal information for anomaly detection.
arXiv Detail & Related papers (2020-05-15T09:17:08Z) - Progressive Graph Convolutional Networks for Semi-Supervised Node
Classification [97.14064057840089]
Graph convolutional networks have been successful in addressing graph-based tasks such as semi-supervised node classification.
We propose a method to automatically build compact and task-specific graph convolutional networks.
arXiv Detail & Related papers (2020-03-27T08:32:16Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
Graph-based clustering plays an important role in the clustering area.
Recent studies about graph convolution neural networks have achieved impressive success on graph type data.
We propose a graph auto-encoder for general data clustering, which constructs the graph adaptively according to the generative perspective of graphs.
arXiv Detail & Related papers (2020-02-20T10:11:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.