Reconstructing Atmospheric Parameters of Exoplanets Using Deep Learning
- URL: http://arxiv.org/abs/2310.01227v1
- Date: Mon, 2 Oct 2023 14:16:04 GMT
- Title: Reconstructing Atmospheric Parameters of Exoplanets Using Deep Learning
- Authors: Flavio Giobergia, Alkis Koudounas, Elena Baralis
- Abstract summary: We present a multi-target probabilistic regression approach that combines deep learning and inverse modeling techniques within a multimodal architecture to extract atmospheric parameters from exoplanets.
Our methodology overcomes computational limitations and outperforms previous approaches, enabling efficient analysis of exoplanetary atmospheres.
- Score: 9.735933075230069
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Exploring exoplanets has transformed our understanding of the universe by
revealing many planetary systems that defy our current understanding. To study
their atmospheres, spectroscopic observations are used to infer essential
atmospheric properties that are not directly measurable. Estimating atmospheric
parameters that best fit the observed spectrum within a specified atmospheric
model is a complex problem that is difficult to model. In this paper, we
present a multi-target probabilistic regression approach that combines deep
learning and inverse modeling techniques within a multimodal architecture to
extract atmospheric parameters from exoplanets. Our methodology overcomes
computational limitations and outperforms previous approaches, enabling
efficient analysis of exoplanetary atmospheres. This research contributes to
advancements in the field of exoplanet research and offers valuable insights
for future studies.
Related papers
- Spherinator and HiPSter: Representation Learning for Unbiased Knowledge Discovery from Simulations [0.0]
We describe a new, unbiased, and machine learning based approach to obtain useful scientific insights from a broad range of simulations.
Our concept is based on applying nonlinear dimensionality reduction to learn compact representations of the data in a low-dimensional space.
We present a prototype using a rotational invariant hyperspherical variational convolutional autoencoder, utilizing a power distribution in the latent space, and trained on galaxies from IllustrisTNG simulation.
arXiv Detail & Related papers (2024-06-06T07:34:58Z) - Aurora: A Foundation Model of the Atmosphere [56.97266186291677]
We introduce Aurora, a large-scale foundation model of the atmosphere trained on over a million hours of diverse weather and climate data.
In under a minute, Aurora produces 5-day global air pollution predictions and 10-day high-resolution weather forecasts.
arXiv Detail & Related papers (2024-05-20T14:45:18Z) - Neural Plasticity-Inspired Multimodal Foundation Model for Earth Observation [48.66623377464203]
Our novel approach introduces the Dynamic One-For-All (DOFA) model, leveraging the concept of neural plasticity in brain science.
This dynamic hypernetwork, adjusting to different wavelengths, enables a single versatile Transformer jointly trained on data from five sensors to excel across 12 distinct Earth observation tasks.
arXiv Detail & Related papers (2024-03-22T17:11:47Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Towards a Machine Learning-Based Approach to Predict Space Object
Density Distributions [0.7652747219811166]
Current models for examining Anthropogenic Space Objects (ASOs) are computationally demanding.
We propose a novel machine learning-based model, as an extension of the MIT Orbital Capacity Tool (MOCAT)
We study how different deep learning-based solutions can potentially be good candidates for ASO propagation and manage the high-dimensionality of the data.
arXiv Detail & Related papers (2024-01-08T19:43:30Z) - Simulation-based Inference for Exoplanet Atmospheric Retrieval: Insights
from winning the Ariel Data Challenge 2023 using Normalizing Flows [0.0]
We present novel machine learning models developed by the AstroAI team for the Ariel Data Challenge 2023.
One of the models secured the top position among 293 competitors.
We introduce an alternative model that exhibits higher performance potential than the winning model, despite scoring lower in the challenge.
arXiv Detail & Related papers (2023-09-17T17:59:59Z) - Searching for Novel Chemistry in Exoplanetary Atmospheres using Machine
Learning for Anomaly Detection [1.8434042562191815]
We advocate the application of machine learning (ML) techniques for anomaly (novelty) detection to exoplanet transit spectra.
We demonstrate the feasibility of two popular anomaly detection methods on a large public database of synthetic spectra.
arXiv Detail & Related papers (2023-08-15T07:19:54Z) - A Heat Diffusion Perspective on Geodesic Preserving Dimensionality
Reduction [66.21060114843202]
We propose a more general heat kernel based manifold embedding method that we call heat geodesic embeddings.
Results show that our method outperforms existing state of the art in preserving ground truth manifold distances.
We also showcase our method on single cell RNA-sequencing datasets with both continuum and cluster structure.
arXiv Detail & Related papers (2023-05-30T13:58:50Z) - Assessing Exoplanet Habitability through Data-driven Approaches: A
Comprehensive Literature Review [0.0]
Review aims to illuminate the emerging trends and advancements within exoplanet research.
Focuses on interplay between exoplanet detection, classification, and visualization.
Describes the broad spectrum of machine learning approaches employed in exoplanet research.
arXiv Detail & Related papers (2023-05-18T17:18:15Z) - Deep Learning Models of the Discrete Component of the Galactic
Interstellar Gamma-Ray Emission [61.26321023273399]
A significant point-like component from the small scale (or discrete) structure in the H2 interstellar gas might be present in the Fermi-LAT data.
We show that deep learning may be effectively employed to model the gamma-ray emission traced by these rare H2 proxies within statistical significance in data-rich regions.
arXiv Detail & Related papers (2022-06-06T18:00:07Z) - Analytical Modelling of Exoplanet Transit Specroscopy with Dimensional
Analysis and Symbolic Regression [68.8204255655161]
The deep learning revolution has opened the door for deriving such analytical results directly with a computer algorithm fitting to the data.
We successfully demonstrate the use of symbolic regression on synthetic data for the transit radii of generic hot Jupiter exoplanets.
As a preprocessing step, we use dimensional analysis to identify the relevant dimensionless combinations of variables.
arXiv Detail & Related papers (2021-12-22T00:52:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.