Towards a Machine Learning-Based Approach to Predict Space Object
Density Distributions
- URL: http://arxiv.org/abs/2401.04212v1
- Date: Mon, 8 Jan 2024 19:43:30 GMT
- Title: Towards a Machine Learning-Based Approach to Predict Space Object
Density Distributions
- Authors: Victor Rodriguez-Fernandez, Sumiyajav Sarangerel, Peng Mun Siew, Pablo
Machuca, Daniel Jang, Richard Linares
- Abstract summary: Current models for examining Anthropogenic Space Objects (ASOs) are computationally demanding.
We propose a novel machine learning-based model, as an extension of the MIT Orbital Capacity Tool (MOCAT)
We study how different deep learning-based solutions can potentially be good candidates for ASO propagation and manage the high-dimensionality of the data.
- Score: 0.7652747219811166
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: With the rapid increase in the number of Anthropogenic Space Objects (ASOs),
Low Earth Orbit (LEO) is facing significant congestion, thereby posing
challenges to space operators and risking the viability of the space
environment for varied uses. Current models for examining this evolution, while
detailed, are computationally demanding. To address these issues, we propose a
novel machine learning-based model, as an extension of the MIT Orbital Capacity
Tool (MOCAT). This advanced model is designed to accelerate the propagation of
ASO density distributions, and it is trained on hundreds of simulations
generated by an established and accurate model of the space environment
evolution. We study how different deep learning-based solutions can potentially
be good candidates for ASO propagation and manage the high-dimensionality of
the data. To assess the model's capabilities, we conduct experiments in long
term forecasting scenarios (around 100 years), analyze how and why the
performance degrades over time, and discuss potential solutions to make this
solution better.
Related papers
- Spherinator and HiPSter: Representation Learning for Unbiased Knowledge Discovery from Simulations [0.0]
We describe a new, unbiased, and machine learning based approach to obtain useful scientific insights from a broad range of simulations.
Our concept is based on applying nonlinear dimensionality reduction to learn compact representations of the data in a low-dimensional space.
We present a prototype using a rotational invariant hyperspherical variational convolutional autoencoder, utilizing a power distribution in the latent space, and trained on galaxies from IllustrisTNG simulation.
arXiv Detail & Related papers (2024-06-06T07:34:58Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - Reconstructing Atmospheric Parameters of Exoplanets Using Deep Learning [9.735933075230069]
We present a multi-target probabilistic regression approach that combines deep learning and inverse modeling techniques within a multimodal architecture to extract atmospheric parameters from exoplanets.
Our methodology overcomes computational limitations and outperforms previous approaches, enabling efficient analysis of exoplanetary atmospheres.
arXiv Detail & Related papers (2023-10-02T14:16:04Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - A machine learning and feature engineering approach for the prediction
of the uncontrolled re-entry of space objects [1.0205541448656992]
We present the development of a deep learning model for the re-entry prediction of uncontrolled objects in Low Earth Orbit (LEO)
The model is based on a modified version of the Sequence-to-Sequence architecture and is trained on the average altitude profile as derived from a set of Two-Line Element (TLE) data of over 400 bodies.
The novelty of the work consists in introducing in the deep learning model, alongside the average altitude, three new input features: a drag-like coefficient (B*), the average solar index, and the area-to-mass ratio of the object.
arXiv Detail & Related papers (2023-03-17T13:53:59Z) - Climate Intervention Analysis using AI Model Guided by Statistical
Physics Principles [6.824166358727082]
We propose a novel solution by utilizing a principle from statistical physics known as the Fluctuation-Dissipation Theorem (FDT)
By leveraging, we are able to extract information encoded in a large dataset produced by Earth System Models.
Our model, AiBEDO, is capable of capturing the complex, multi-timescale effects of radiation perturbations on global and regional surface climate.
arXiv Detail & Related papers (2023-02-07T05:09:10Z) - Predictive World Models from Real-World Partial Observations [66.80340484148931]
We present a framework for learning a probabilistic predictive world model for real-world road environments.
While prior methods require complete states as ground truth for learning, we present a novel sequential training method to allow HVAEs to learn to predict complete states from partially observed states only.
arXiv Detail & Related papers (2023-01-12T02:07:26Z) - Temporal Predictive Coding For Model-Based Planning In Latent Space [80.99554006174093]
We present an information-theoretic approach that employs temporal predictive coding to encode elements in the environment that can be predicted across time.
We evaluate our model on a challenging modification of standard DMControl tasks where the background is replaced with natural videos that contain complex but irrelevant information to the planning task.
arXiv Detail & Related papers (2021-06-14T04:31:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.