Open and Linked Data Model for Carbon Footprint Scenarios
- URL: http://arxiv.org/abs/2310.01278v2
- Date: Thu, 5 Oct 2023 11:01:52 GMT
- Title: Open and Linked Data Model for Carbon Footprint Scenarios
- Authors: Boris Ruf and Marcin Detyniecki
- Abstract summary: We propose an open and linked data model for carbon footprint scenarios.
We demonstrate the implementation of our idea with a web-based data interpreter prototype.
- Score: 8.550140109387469
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Carbon footprint quantification is key to well-informed decision making over
carbon reduction potential, both for individuals and for companies. Many carbon
footprint case studies for products and services have been circulated recently.
Due to the complex relationships within each scenario, however, the underlying
assumptions often are difficult to understand. Also, re-using and adapting a
scenario to local or individual circumstances is not a straightforward task. To
overcome these challenges, we propose an open and linked data model for carbon
footprint scenarios which improves data quality and transparency by design. We
demonstrate the implementation of our idea with a web-based data interpreter
prototype.
Related papers
- The Sunk Carbon Fallacy: Rethinking Carbon Footprint Metrics for Effective Carbon-Aware Scheduling [2.562727244613512]
We evaluate carbon-aware job scheduling and placement on a given set of servers for a number of carbon accounting metrics.
We study the factors that affect the added carbon cost of such suboptimal decision-making.
arXiv Detail & Related papers (2024-10-19T12:23:59Z) - Carbon Market Simulation with Adaptive Mechanism Design [55.25103894620696]
A carbon market is a market-based tool that incentivizes economic agents to align individual profits with the global utility.
We propose an adaptive mechanism design framework, simulating the market using hierarchical, model-free multi-agent reinforcement learning (MARL)
Numerical results show MARL enables government agents to balance productivity, equality, and carbon emissions.
arXiv Detail & Related papers (2024-06-12T05:08:51Z) - Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
Generative AI (GAI) holds immense potential to reduce carbon emissions of Artificial Intelligence of Things (AIoT)
In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT.
We propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules.
arXiv Detail & Related papers (2024-04-28T05:46:28Z) - FedGreen: Carbon-aware Federated Learning with Model Size Adaptation [36.283273000969636]
Federated learning (FL) provides a promising collaborative framework to build a model from distributed clients.
Cloud and edge servers hosting FL clients may exhibit diverse carbon footprints influenced by their geographical locations with varying power sources.
We propose FedGreen, a carbon-aware FL approach to efficiently train models by adopting adaptive model sizes shared with clients.
arXiv Detail & Related papers (2024-04-23T20:37:26Z) - Leveraging AI-derived Data for Carbon Accounting: Information Extraction
from Alternative Sources [0.0]
We discuss the need for alternative, more diverse data sources that can play a significant role on our path to trusted carbon accounting procedures.
We present a case study of the recent developments on real-world data via an NLP-powered analysis using OpenAI's GPT API on financial and shipping data.
arXiv Detail & Related papers (2023-11-26T22:49:41Z) - Machine Guided Discovery of Novel Carbon Capture Solvents [48.7576911714538]
Machine learning offers a promising method for reducing the time and resource burdens of materials development.
We have developed an end-to-end "discovery cycle" to select new aqueous amines compatible with the commercially viable acid gas scrubbing carbon capture.
The prediction process shows 60% accuracy against experiment for both material parameters and 80% for a single parameter on an external test set.
arXiv Detail & Related papers (2023-03-24T18:32:38Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
Machine learning (ML) requires using energy to carry out computations during the model training process.
The generation of this energy comes with an environmental cost in terms of greenhouse gas emissions, depending on quantity used and the energy source.
We present a survey of the carbon emissions of 95 ML models across time and different tasks in natural language processing and computer vision.
arXiv Detail & Related papers (2023-02-16T18:35:00Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
We provide a framework for measuring software carbon intensity, and propose to measure operational carbon emissions.
We evaluate a suite of approaches for reducing emissions on the Microsoft Azure cloud compute platform.
arXiv Detail & Related papers (2022-06-10T17:04:04Z) - Towards a Systematic Survey for Carbon Neutral Data Centers [23.339102377319833]
Data centers are carbon-intensive enterprises due to their massive energy consumption.
It is estimated that data center industry will account for 8% of global carbon emissions by 2030.
This survey paper proposes a roadmap towards carbon-neutral data centers that takes into account both policy instruments and technological methodologies.
arXiv Detail & Related papers (2021-10-15T09:24:15Z) - Petri Nets with Parameterised Data: Modelling and Verification (Extended
Version) [67.99023219822564]
We introduce and study an extension of coloured Petri nets, called catalog-nets, providing two key features to capture this type of processes.
We show that fresh-value injection is a particularly complex feature to handle, and discuss strategies to tame it.
arXiv Detail & Related papers (2020-06-11T17:26:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.