Carbon Market Simulation with Adaptive Mechanism Design
- URL: http://arxiv.org/abs/2406.07875v2
- Date: Thu, 13 Jun 2024 10:29:16 GMT
- Title: Carbon Market Simulation with Adaptive Mechanism Design
- Authors: Han Wang, Wenhao Li, Hongyuan Zha, Baoxiang Wang,
- Abstract summary: A carbon market is a market-based tool that incentivizes economic agents to align individual profits with the global utility.
We propose an adaptive mechanism design framework, simulating the market using hierarchical, model-free multi-agent reinforcement learning (MARL)
Numerical results show MARL enables government agents to balance productivity, equality, and carbon emissions.
- Score: 55.25103894620696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A carbon market is a market-based tool that incentivizes economic agents to align individual profits with the global utility, i.e., reducing carbon emissions to tackle climate change. Cap and trade stands as a critical principle based on allocating and trading carbon allowances (carbon emission credit), enabling economic agents to follow planned emissions and penalizing excess emissions. A central authority is responsible for introducing and allocating those allowances in cap and trade. However, the complexity of carbon market dynamics makes accurate simulation intractable, which in turn hinders the design of effective allocation strategies. To address this, we propose an adaptive mechanism design framework, simulating the market using hierarchical, model-free multi-agent reinforcement learning (MARL). Government agents allocate carbon credits, while enterprises engage in economic activities and carbon trading. This framework illustrates agents' behavior comprehensively. Numerical results show MARL enables government agents to balance productivity, equality, and carbon emissions. Our project is available at https://github.com/xwanghan/Carbon-Simulator.
Related papers
- The Sunk Carbon Fallacy: Rethinking Carbon Footprint Metrics for Effective Carbon-Aware Scheduling [2.562727244613512]
We evaluate carbon-aware job scheduling and placement on a given set of servers for a number of carbon accounting metrics.
We study the factors that affect the added carbon cost of such suboptimal decision-making.
arXiv Detail & Related papers (2024-10-19T12:23:59Z) - Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
Generative AI (GAI) holds immense potential to reduce carbon emissions of Artificial Intelligence of Things (AIoT)
In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT.
We propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules.
arXiv Detail & Related papers (2024-04-28T05:46:28Z) - Efficient Strategies on Supply Chain Network Optimization for Industrial Carbon Emission Reduction [0.0]
This study investigates the efficient strategies for supply chain network optimization, specifically aimed at reducing industrial carbon emissions.
We introduce Adaptive Carbon Emissions Indexing (ACEI), utilizing real-time carbon emissions data to drive instantaneous adjustments in supply chain operations.
arXiv Detail & Related papers (2024-04-17T14:53:55Z) - Global, robust and comparable digital carbon assets [0.28106259549258145]
We propose a new digital carbon asset (the PACT stablecoin) against which carbon offsetting claims can be transparently verified.
We implement and evaluate the PACT carbon stablecoin on the Tezos blockchain, which is designed to facilitate low-cost transactions.
Our work brings scale and trust to the voluntary carbon market by providing a transparent, scalable, and efficient framework for high integrity carbon credit transactions.
arXiv Detail & Related papers (2024-03-21T17:35:07Z) - Estimating the Carbon Footprint of BLOOM, a 176B Parameter Language
Model [72.65502770895417]
We quantify the carbon footprint of BLOOM, a 176-billion parameter language model, across its life cycle.
We estimate that BLOOM's final training emitted approximately 24.7 tonnes ofcarboneqif we consider only the dynamic power consumption.
We conclude with a discussion regarding the difficulty of precisely estimating the carbon footprint of machine learning models.
arXiv Detail & Related papers (2022-11-03T17:13:48Z) - (Private)-Retroactive Carbon Pricing [(P)ReCaP]: A Market-based Approach
for Climate Finance and Risk Assessment [64.83786252406105]
Retrospective Social Cost of Carbon Updating (ReSCCU) is a novel mechanism that corrects for limitations as empirically measured evidence is collected.
To implement ReSCCU in the context of carbon taxation, we propose Retroactive Carbon Pricing (ReCaP)
To alleviate systematic risks and minimize government involvement, we introduce the Private ReCaP (PReCaP) prediction market.
arXiv Detail & Related papers (2022-05-02T06:02:13Z) - A hybrid deep learning approach for purchasing strategy of carbon
emission rights -- Based on Shanghai pilot market [0.0]
This paper attempts to design a carbon emission purchasing strategy for enterprises, and establish a carbon emission price prediction model.
We built a hybrid deep learning model by embedding Generalized Autoregressive Heteroskedastic (GARCH) into the Gate Recurrent Unit (GRU) model.
In the simulation, the purchasing strategy based on the GARCH-GRU model was executed with the least cost as well.
arXiv Detail & Related papers (2022-01-24T03:10:01Z) - Modelling the transition to a low-carbon energy supply [91.3755431537592]
A transition to a low-carbon electricity supply is crucial to limit the impacts of climate change.
Reducing carbon emissions could help prevent the world from reaching a tipping point, where runaway emissions are likely.
Runaway emissions could lead to extremes in weather conditions around the world.
arXiv Detail & Related papers (2021-09-25T12:37:05Z) - Optimizing carbon tax for decentralized electricity markets using an
agent-based model [69.3939291118954]
Averting the effects of anthropogenic climate change requires a transition from fossil fuels to low-carbon technology.
Carbon taxes have been shown to be an efficient way to aid in this transition.
We use the NSGA-II genetic algorithm to minimize average electricity price and relative carbon intensity of the electricity mix.
arXiv Detail & Related papers (2020-05-28T06:54:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.