The Superconducting Quasiparticle-Amplifying Transmon: A Qubit-Based Sensor for meV Scale Phonons and Single THz Photons
- URL: http://arxiv.org/abs/2310.01345v4
- Date: Thu, 14 Nov 2024 16:38:06 GMT
- Title: The Superconducting Quasiparticle-Amplifying Transmon: A Qubit-Based Sensor for meV Scale Phonons and Single THz Photons
- Authors: Caleb W. Fink, Chiara P. Salemi, Betty A. Young, David I. Schuster, Noah A. Kurinsky,
- Abstract summary: SQUATs: Superconducting Quasiparticle-Amplifying Transmons.
We propose a novel sensor based on the transmon qubit architecture combined with a signal-enhancing superconducting quasiparticle amplification stage.
We predict that with minimal R&D effort, solid-state based detectors patterned with these sensors can achieve sensitivity to single THz photons, and sensitivity to $1,mathrmmeV$ phonons in the detector absorber substrate on the $mumathrms$ timescale.
- Score: 0.19528996680336308
- License:
- Abstract: With great interest from the quantum computing community, an immense amount of R&D effort has been invested into improving superconducting qubits. The technologies developed for the design and fabrication of these qubits can be directly applied to applications for ultra-low threshold particle detectors, e.g. low-mass dark matter and far-IR photon sensing. We propose a novel sensor based on the transmon qubit architecture combined with a signal-enhancing superconducting quasiparticle amplification stage. We refer to these sensors as SQUATs: Superconducting Quasiparticle-Amplifying Transmons. We detail the operating principle and design of this new sensor and predict that with minimal R&D effort, solid-state based detectors patterned with these sensors can achieve sensitivity to single THz photons, and sensitivity to $1\,\mathrm{meV}$ phonons in the detector absorber substrate on the $\mu\mathrm{s}$ timescale.
Related papers
- Direct detection of quasiparticle tunneling with a charge-sensitive superconducting sensor coupled to a waveguide [0.0]
We demonstrate a quasiparticle detector based on a superconducting qubit directly coupled to a waveguide.
We directly measure quasiparticle number parity on the qubit island by probing the coherent scattering of a microwave tone.
We observe tunneling rates between 0.8 and $7rms-1$, depending on the average occupation of the detector qubit, and achieve a temporal resolution below $10murms$ without a quantum-limited amplifier.
arXiv Detail & Related papers (2024-04-01T17:52:10Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Single-photon detection using high-temperature superconductors [0.0]
Superconducting nanowires (SNWs) out of thin flakes of Bi$$Sr$CaCu$$$O$_8+delta$ and La$_$Sr$_0.45$CuO$_4$/La$CuO$_4$ demonstrated single-photon response up to $25$ and $8$ K.
arXiv Detail & Related papers (2022-08-11T07:24:45Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - An integrated magnetometry platform with stackable waveguide-assisted
detection channels for sensing arrays [45.82374977939355]
We present a novel architecture which allows us to create NV$-$-centers a few nanometers below the diamond surface.
We experimentally verify the coupling efficiency, showcase the detection of magnetic resonance signals through the waveguides and perform first proof-of-principle experiments in magnetic field and temperature sensing.
In the future, our approach will enable the development of two-dimensional sensing arrays facilitating spatially and temporally correlated magnetometry.
arXiv Detail & Related papers (2020-12-04T12:59:29Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z) - A femto-Tesla DC SQUID design for quantum-ready readouts [0.0]
We present a gradiometric niobium SQUID design with state-of-the-art sensitivity in the femto-Tesla range.
The sensor is a next generation of the fractional SQUIDs with tightly optimized input coil.
arXiv Detail & Related papers (2020-03-17T13:13:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.