A femto-Tesla DC SQUID design for quantum-ready readouts
- URL: http://arxiv.org/abs/2003.07702v2
- Date: Wed, 3 Jun 2020 21:21:00 GMT
- Title: A femto-Tesla DC SQUID design for quantum-ready readouts
- Authors: Ilya Sochnikov, Donovan Davino, Beena Kalisky
- Abstract summary: We present a gradiometric niobium SQUID design with state-of-the-art sensitivity in the femto-Tesla range.
The sensor is a next generation of the fractional SQUIDs with tightly optimized input coil.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Among some of the current uses of the DC Superconducting QUantum Interference
Devices (SQUIDs) are qubit-readouts and sensors for probing properties of
quantum materials. We present a rather unique gradiometric niobium SQUID design
with state-of-the-art sensitivity in the femto-Tesla range which can be easily
tuned to specific readout requirements. The sensor is a next generation of the
fractional SQUIDs with tightly optimized input coil and a combination of all
measures known for restraining parasitic resonances and other detrimental
effects. Our design combines the practical usefulness of well-defined pickup
loops for superior imaging kernel and tunable-probing applications with the
fractionalization approach to reduce undesired inductances. In addition, our
modeling predicts small dimensions for these planar sensors. These features
make them of high relevance for material studies and for detection of magnetic
fields in small volumes, e.g. as part of a cryogenic scanning quantum imaging
apparatus for efficient diagnostics and quantum device readouts. This
manuscript will benefit scientists and engineers working on quantum computing
technologies by clarifying potential general misconceptions about DC SQUID
optimization alongside the introduction of the novel flexible compact DC SQUID
design.
Related papers
- Maximizing information obtainable by quantum sensors through the Quantum Zeno Effect [0.0]
We exploit the Quantum Zeno Effect (QZE) as a tool for maximizing information obtainable by quantum sensors.
We introduce the concept of information amplification by the QZE for a LAC system under off-resonant conditions.
arXiv Detail & Related papers (2024-03-17T20:45:39Z) - Fault-tolerant one-way noiseless amplification for microwave bosonic
quantum information processing [0.5524804393257919]
Microwave noise-less linear amplifier (NLA) suitable to circumvent the losses incurred by a flying photon undergoing an amplitude damping channel (ADC)
In this article we propose a microwave noise-less linear amplifier (NLA) suitable to circumvent the losses incurred by a flying photon undergoing an amplitude damping channel (ADC)
arXiv Detail & Related papers (2023-12-07T21:34:47Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - The Superconducting Quasiparticle-Amplifying Transmon: A Qubit-Based Sensor for meV Scale Phonons and Single THz Photons [0.19528996680336308]
SQUATs: Superconducting Quasiparticle-Amplifying Transmons.
We propose a novel sensor based on the transmon qubit architecture combined with a signal-enhancing superconducting quasiparticle amplification stage.
We predict that with minimal R&D effort, solid-state based detectors patterned with these sensors can achieve sensitivity to single THz photons, and sensitivity to $1,mathrmmeV$ phonons in the detector absorber substrate on the $mumathrms$ timescale.
arXiv Detail & Related papers (2023-10-02T17:08:09Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Optimal and Variational Multi-Parameter Quantum Metrology and Vector
Field Sensing [0.0]
We study multi- parameter sensing of 2D and 3D vector fields within the Bayesian framework for $SU(2)$ quantum interferometry.
We present sensors that have limited entanglement capabilities, and yet, significantly outperform sensors that operate without entanglement.
arXiv Detail & Related papers (2023-02-15T17:12:38Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Microfluidic quantum sensing platform for lab-on-a-chip applications [0.0]
We present a fully integrated microfluidic platform for solid-state spin quantum sensors, such as the nitrogen-vacancy center in diamond.
Our work opens the door for novel chemical analysis capabilities within LOC devices with applications in electrochemistry, high throughput reaction screening, bioanalytics, organ-on-a-chip, or single-cell studies.
arXiv Detail & Related papers (2022-09-04T16:01:56Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - A new concept for design of photonic integrated circuits with the
ultimate density and low loss [62.997667081978825]
We propose a new concept for design of PICs with the ultimate downscaling capability, the absence of geometric loss and a high-fidelity throughput.
This is achieved by a periodic continuous-time quantum walk of photons through waveguide arrays.
We demonstrate the potential of the new concept by reconsidering the design of basic building blocks of the information and sensing systems.
arXiv Detail & Related papers (2021-08-02T14:23:18Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.