Identifying and Mitigating Privacy Risks Stemming from Language Models: A Survey
- URL: http://arxiv.org/abs/2310.01424v2
- Date: Tue, 18 Jun 2024 09:14:34 GMT
- Title: Identifying and Mitigating Privacy Risks Stemming from Language Models: A Survey
- Authors: Victoria Smith, Ali Shahin Shamsabadi, Carolyn Ashurst, Adrian Weller,
- Abstract summary: Large Language Models (LLMs) have shown greatly enhanced performance in recent years, attributed to increased size and extensive training data.
Training data memorization in Machine Learning models scales with model size, particularly concerning for LLMs.
Memorized text sequences have the potential to be directly leaked from LLMs, posing a serious threat to data privacy.
- Score: 43.063650238194384
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have shown greatly enhanced performance in recent years, attributed to increased size and extensive training data. This advancement has led to widespread interest and adoption across industries and the public. However, training data memorization in Machine Learning models scales with model size, particularly concerning for LLMs. Memorized text sequences have the potential to be directly leaked from LLMs, posing a serious threat to data privacy. Various techniques have been developed to attack LLMs and extract their training data. As these models continue to grow, this issue becomes increasingly critical. To help researchers and policymakers understand the state of knowledge around privacy attacks and mitigations, including where more work is needed, we present the first SoK on data privacy for LLMs. We (i) identify a taxonomy of salient dimensions where attacks differ on LLMs, (ii) systematize existing attacks, using our taxonomy of dimensions to highlight key trends, (iii) survey existing mitigation strategies, highlighting their strengths and limitations, and (iv) identify key gaps, demonstrating open problems and areas for concern.
Related papers
- Undesirable Memorization in Large Language Models: A Survey [5.659933808910005]
We present a Systematization of Knowledge (SoK) on the topic of memorization in Large Language Models (LLMs)
Memorization is the effect that a model tends to store and reproduce phrases or passages from the training data.
We discuss the metrics and methods used to measure memorization, followed by an analysis of the factors that contribute to memorization phenomenon.
arXiv Detail & Related papers (2024-10-03T16:34:46Z) - LLM-PBE: Assessing Data Privacy in Large Language Models [111.58198436835036]
Large Language Models (LLMs) have become integral to numerous domains, significantly advancing applications in data management, mining, and analysis.
Despite the critical nature of this issue, there has been no existing literature to offer a comprehensive assessment of data privacy risks in LLMs.
Our paper introduces LLM-PBE, a toolkit crafted specifically for the systematic evaluation of data privacy risks in LLMs.
arXiv Detail & Related papers (2024-08-23T01:37:29Z) - Preserving Privacy in Large Language Models: A Survey on Current Threats and Solutions [12.451936012379319]
Large Language Models (LLMs) represent a significant advancement in artificial intelligence, finding applications across various domains.
Their reliance on massive internet-sourced datasets for training brings notable privacy issues.
Certain application-specific scenarios may require fine-tuning these models on private data.
arXiv Detail & Related papers (2024-08-10T05:41:19Z) - A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends [78.3201480023907]
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities across a wide range of multimodal understanding and reasoning tasks.
The vulnerability of LVLMs is relatively underexplored, posing potential security risks in daily usage.
In this paper, we provide a comprehensive review of the various forms of existing LVLM attacks.
arXiv Detail & Related papers (2024-07-10T06:57:58Z) - Unique Security and Privacy Threats of Large Language Model: A Comprehensive Survey [46.19229410404056]
Large language models (LLMs) have made remarkable advancements in natural language processing.
These models are trained on vast datasets to exhibit powerful language understanding and generation capabilities.
Privacy and security issues have been revealed throughout their life cycle.
arXiv Detail & Related papers (2024-06-12T07:55:32Z) - A Survey on Detection of LLMs-Generated Content [97.87912800179531]
The ability to detect LLMs-generated content has become of paramount importance.
We aim to provide a detailed overview of existing detection strategies and benchmarks.
We also posit the necessity for a multi-faceted approach to defend against various attacks.
arXiv Detail & Related papers (2023-10-24T09:10:26Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
We analyze the current privacy attacks targeting large language models (LLMs) and categorize them according to the adversary's assumed capabilities.
We present a detailed overview of prominent defense strategies that have been developed to counter these privacy attacks.
arXiv Detail & Related papers (2023-10-16T13:23:54Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
We investigate the potential misuse of modern Large Language Models (LLMs) for generating credible-sounding misinformation.
Our study reveals that LLMs can act as effective misinformation generators, leading to a significant degradation in the performance of Open-Domain Question Answering (ODQA) systems.
arXiv Detail & Related papers (2023-05-23T04:10:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.