Fetal-BET: Brain Extraction Tool for Fetal MRI
- URL: http://arxiv.org/abs/2310.01523v2
- Date: Mon, 13 Nov 2023 20:24:07 GMT
- Title: Fetal-BET: Brain Extraction Tool for Fetal MRI
- Authors: Razieh Faghihpirayesh, Davood Karimi, Deniz Erdo\u{g}mu\c{s}, Ali
Gholipour
- Abstract summary: We build a large annotated dataset of approximately 72,000 2D fetal brain MRI images.
Using this dataset, we developed and validated deep learning methods, by exploiting the power of the U-Net style architectures.
Our approach leverages the rich information from multi-contrast (multi-sequence) fetal MRI data, enabling precise delineation of the fetal brain structures.
- Score: 4.214523989654048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fetal brain extraction is a necessary first step in most computational fetal
brain MRI pipelines. However, it has been a very challenging task due to
non-standard fetal head pose, fetal movements during examination, and vastly
heterogeneous appearance of the developing fetal brain and the neighboring
fetal and maternal anatomy across various sequences and scanning conditions.
Development of a machine learning method to effectively address this task
requires a large and rich labeled dataset that has not been previously
available. As a result, there is currently no method for accurate fetal brain
extraction on various fetal MRI sequences. In this work, we first built a large
annotated dataset of approximately 72,000 2D fetal brain MRI images. Our
dataset covers the three common MRI sequences including T2-weighted,
diffusion-weighted, and functional MRI acquired with different scanners.
Moreover, it includes normal and pathological brains. Using this dataset, we
developed and validated deep learning methods, by exploiting the power of the
U-Net style architectures, the attention mechanism, multi-contrast feature
learning, and data augmentation for fast, accurate, and generalizable automatic
fetal brain extraction. Our approach leverages the rich information from
multi-contrast (multi-sequence) fetal MRI data, enabling precise delineation of
the fetal brain structures. Evaluations on independent test data show that our
method achieves accurate brain extraction on heterogeneous test data acquired
with different scanners, on pathological brains, and at various gestational
stages. This robustness underscores the potential utility of our deep learning
model for fetal brain imaging and image analysis.
Related papers
- Search Wide, Focus Deep: Automated Fetal Brain Extraction with Sparse Training Data [1.0252723257176566]
We propose a test-time strategy that reduces false positives in networks trained on sparse, synthetic labels.
We train models at different window sizes using synthetic images derived from a small number of fetal brain label maps.
Our framework matches state-of-the-art brain extraction methods on clinical HASTE scans of third-trimester fetuses.
arXiv Detail & Related papers (2024-10-27T17:54:01Z) - Detailed delineation of the fetal brain in diffusion MRI via multi-task learning [5.261252388770444]
We developed and validated a unified computational framework to segment the brain tissue into white matter, cortical/subcortical gray matter, and cerebrospinal fluid.
Using these labels, we developed and validated a multi-task deep learning method to perform the three computations.
arXiv Detail & Related papers (2024-08-26T13:51:04Z) - Brain3D: Generating 3D Objects from fMRI [76.41771117405973]
We design a novel 3D object representation learning method, Brain3D, that takes as input the fMRI data of a subject.
We show that our model captures the distinct functionalities of each region of human vision system.
Preliminary evaluations indicate that Brain3D can successfully identify the disordered brain regions in simulated scenarios.
arXiv Detail & Related papers (2024-05-24T06:06:11Z) - Anatomically Constrained Tractography of the Fetal Brain [6.112565873653592]
We advocate for anatomically constrained tractography based on an accurate segmentation of the fetal brain tissue directly in the dMRI space.
Experiments on independent test data show that this method can accurately segment the fetal brain tissue and drastically improve tractography results.
arXiv Detail & Related papers (2024-03-04T19:56:19Z) - Cas-DiffCom: Cascaded diffusion model for infant longitudinal
super-resolution 3D medical image completion [47.83003164569194]
We propose a two-stage cascaded diffusion model, Cas-DiffCom, for dense and longitudinal 3D infant brain MRI completion and super-resolution.
Experiment results validate that Cas-DiffCom achieves both individual consistency and high fidelity in longitudinal infant brain image completion.
arXiv Detail & Related papers (2024-02-21T12:54:40Z) - FetMRQC: a robust quality control system for multi-centric fetal brain MRI [33.08151493899017]
We present FetMRQC, an open-source machine-learning framework for automated image quality assessment and quality control.
FetMRQC extracts an ensemble of quality metrics from unprocessed anatomical MRI and combines them to predict experts' ratings.
We validate our framework on a pioneeringly large and diverse dataset of more than 1600 manually rated fetal brain T2-weighted images.
arXiv Detail & Related papers (2023-11-08T15:59:41Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Deep Transfer Learning for Brain Magnetic Resonance Image Multi-class
Classification [0.6117371161379209]
We have developed a framework that uses Deep Transfer Learning to perform a multi-classification of tumors in the brain MRI images.
Using the novel dataset and two publicly available MRI brain datasets, this proposed approach attained a classification accuracy of 86.40%.
Results of our experiments significantly demonstrate our proposed framework for transfer learning is a potential and effective method for brain tumor multi-classification tasks.
arXiv Detail & Related papers (2021-06-14T12:19:27Z) - Interpretation of 3D CNNs for Brain MRI Data Classification [56.895060189929055]
We extend the previous findings in gender differences from diffusion-tensor imaging on T1 brain MRI scans.
We provide the voxel-wise 3D CNN interpretation comparing the results of three interpretation methods.
arXiv Detail & Related papers (2020-06-20T17:56:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.