FetMRQC: a robust quality control system for multi-centric fetal brain MRI
- URL: http://arxiv.org/abs/2311.04780v2
- Date: Tue, 23 Jul 2024 09:33:23 GMT
- Title: FetMRQC: a robust quality control system for multi-centric fetal brain MRI
- Authors: Thomas Sanchez, Oscar Esteban, Yvan Gomez, Alexandre Pron, Mériam Koob, Vincent Dunet, Nadine Girard, Andras Jakab, Elisenda Eixarch, Guillaume Auzias, Meritxell Bach Cuadra,
- Abstract summary: We present FetMRQC, an open-source machine-learning framework for automated image quality assessment and quality control.
FetMRQC extracts an ensemble of quality metrics from unprocessed anatomical MRI and combines them to predict experts' ratings.
We validate our framework on a pioneeringly large and diverse dataset of more than 1600 manually rated fetal brain T2-weighted images.
- Score: 33.08151493899017
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fetal brain MRI is becoming an increasingly relevant complement to neurosonography for perinatal diagnosis, allowing fundamental insights into fetal brain development throughout gestation. However, uncontrolled fetal motion and heterogeneity in acquisition protocols lead to data of variable quality, potentially biasing the outcome of subsequent studies. We present FetMRQC, an open-source machine-learning framework for automated image quality assessment and quality control that is robust to domain shifts induced by the heterogeneity of clinical data. FetMRQC extracts an ensemble of quality metrics from unprocessed anatomical MRI and combines them to predict experts' ratings using random forests. We validate our framework on a pioneeringly large and diverse dataset of more than 1600 manually rated fetal brain T2-weighted images from four clinical centers and 13 different scanners. Our study shows that FetMRQC's predictions generalize well to unseen data while being interpretable. FetMRQC is a step towards more robust fetal brain neuroimaging, which has the potential to shed new insights on the developing human brain.
Related papers
- A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds [49.34500499203579]
We create a variational autoencoder (VAE)-based model, DemoVAE, to decorrelate fMRI features from demographics.
We generate high-quality synthetic fMRI data based on user-supplied demographics.
arXiv Detail & Related papers (2024-05-13T17:49:20Z) - Improving cross-domain brain tissue segmentation in fetal MRI with synthetic data [1.1936126505067601]
We introduce Fetal SynthSeg, a domain randomization method to segment fetal brain MRI.
Our results show that models trained solely on synthetic data outperform models trained on real data.
We extend our evaluation to 40 subjects acquired using lowfield (0.55T) MRI and reconstructed with novel SR models.
arXiv Detail & Related papers (2024-03-22T10:42:25Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - Advancing Brain Tumor Detection: A Thorough Investigation of CNNs,
Clustering, and SoftMax Classification in the Analysis of MRI Images [0.0]
Brain tumors pose a significant global health challenge due to their high prevalence and mortality rates across all age groups.
This study presents a comprehensive investigation into the use of Convolutional Neural Networks (CNNs) for brain tumor detection using Magnetic Resonance Imaging (MRI) images.
The dataset, consisting of MRI scans from both healthy individuals and patients with brain tumors, was processed and fed into the CNN architecture.
arXiv Detail & Related papers (2023-10-26T18:27:20Z) - Fetal-BET: Brain Extraction Tool for Fetal MRI [4.214523989654048]
We build a large annotated dataset of approximately 72,000 2D fetal brain MRI images.
Using this dataset, we developed and validated deep learning methods, by exploiting the power of the U-Net style architectures.
Our approach leverages the rich information from multi-contrast (multi-sequence) fetal MRI data, enabling precise delineation of the fetal brain structures.
arXiv Detail & Related papers (2023-10-02T18:14:23Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - FetMRQC: Automated Quality Control for fetal brain MRI [1.6231541773673115]
We propose FetMRQC, a machine learning framework for automated image quality assessment tailored to fetal brain MRI.
We show that FetMRQC is able to generalize out-of-domain, while being interpretable and data efficient.
We also release a novel manual quality rating tool designed to facilitate and optimize quality rating of fetal brain images.
arXiv Detail & Related papers (2023-04-12T14:20:21Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Evaluating U-net Brain Extraction for Multi-site and Longitudinal
Preclinical Stroke Imaging [0.4310985013483366]
Convolutional neural networks (CNNs) can improve accuracy and reduce operator time.
We developed a deep-learning mouse brain extraction tool by using a U-net CNN.
We trained, validated, and tested a typical U-net model on 240 multimodal MRI datasets.
arXiv Detail & Related papers (2022-03-11T02:00:27Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
Brain age estimation from Magnetic Resonance Images (MRI) derives the difference between a subject's biological brain age and their chronological age.
Early detection of neurodegeneration manifesting as a higher brain age can potentially facilitate better medical care and planning for affected individuals.
We develop a new deep learning approach that uses 3D patches of the brain as well as convolutional neural networks (CNNs) to develop a localised brain age estimator.
arXiv Detail & Related papers (2020-08-29T11:50:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.