論文の概要: Memory-efficient particle filter recurrent neural network for object
localization
- arxiv url: http://arxiv.org/abs/2310.01595v1
- Date: Mon, 2 Oct 2023 19:41:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-04 19:08:21.917081
- Title: Memory-efficient particle filter recurrent neural network for object
localization
- Title(参考訳): オブジェクトローカライゼーションのためのメモリ効率なパーティクルフィルタ繰り返しニューラルネットワーク
- Authors: Roman Korkin, Ivan Oseledets, Aleksandr Katrutsa
- Abstract要約: 本研究では、オブジェクトの局所化問題を解決するために、新しいメモリ効率のリカレントニューラルネットワーク(RNN)アーキテクチャを提案する。
古典的粒子フィルタの概念をGRU RNNアーキテクチャと組み合わせる。
我々の実験では、mePFRNNモデルは、考慮された競合相手よりも正確なローカライゼーションを提供し、訓練されたパラメータを少なくする。
- 参考スコア(独自算出の注目度): 53.68402839500528
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study proposes a novel memory-efficient recurrent neural network (RNN)
architecture specified to solve the object localization problem. This problem
is to recover the object states along with its movement in a noisy environment.
We take the idea of the classical particle filter and combine it with GRU RNN
architecture. The key feature of the resulting memory-efficient particle filter
RNN model (mePFRNN) is that it requires the same number of parameters to
process environments of different sizes. Thus, the proposed mePFRNN
architecture consumes less memory to store parameters compared to the
previously proposed PFRNN model. To demonstrate the performance of our model,
we test it on symmetric and noisy environments that are incredibly challenging
for filtering algorithms. In our experiments, the mePFRNN model provides more
precise localization than the considered competitors and requires fewer trained
parameters.
- Abstract(参考訳): 本研究では、オブジェクトの局所化問題を解決するために、新しいメモリ効率のリカレントニューラルネットワーク(RNN)アーキテクチャを提案する。
この問題は、ノイズの多い環境で物体の状態と動きを回復することである。
古典的粒子フィルタの概念をGRU RNNアーキテクチャと組み合わせる。
結果として生じるメモリ効率の粒子フィルタRNNモデル(mePFRNN)の重要な特徴は、異なるサイズの環境を処理するために同じ数のパラメータを必要とすることである。
したがって、提案するmePFRNNアーキテクチャは、以前提案したPFRNNモデルと比較してメモリ消費が少なく、パラメータを保存することができる。
モデルの性能を示すために,フィルタアルゴリズムにおいて極めて困難である対称環境および雑音環境上でテストを行った。
実験では、mepfrnnモデルが競合相手よりも正確な位置決めを提供し、より少ない訓練パラメータを必要とする。
関連論文リスト
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - RL-Pruner: Structured Pruning Using Reinforcement Learning for CNN Compression and Acceleration [0.0]
RL-Prunerを提案する。このRL-Prunerは、強化学習を用いて最適プルーニング分布を学習する。
RL-Prunerは、モデル固有のプルーニング実装を必要とせずに、入力モデル内のフィルタ間の依存関係を自動的に抽出し、プルーニングを実行する。
論文 参考訳(メタデータ) (2024-11-10T13:35:10Z) - MPruner: Optimizing Neural Network Size with CKA-Based Mutual Information Pruning [7.262751938473306]
プルーニング(Pruning)は、ニューラルネットワークのサイズを減らし、数学的に精度の保存を保証している、よく確立されたテクニックである。
我々は,ベクトル類似性により相互情報を活用する新しいプルーニングアルゴリズムMPrunerを開発した。
MPrunerはCNNとトランスフォーマーベースのモデルで最大50%のパラメータとメモリ使用量の削減を実現した。
論文 参考訳(メタデータ) (2024-08-24T05:54:47Z) - EvSegSNN: Neuromorphic Semantic Segmentation for Event Data [0.6138671548064356]
EvSegSNN は、Parametric Leaky Integrate と Fire のニューロンに依存した、生物学的に検証可能なエンコーダ-デコーダU字型アーキテクチャである。
本稿では,スパイキングニューラルネットワークとイベントカメラを組み合わせることによって,エンド・ツー・エンドのバイオインスパイアされたセマンティックセマンティックセマンティクス手法を提案する。
DDD17で実施された実験は、EvSegSNNがMIoUの観点から最も近い最先端モデルを上回っていることを示している。
論文 参考訳(メタデータ) (2024-06-20T10:36:24Z) - Batch Normalization Tells You Which Filter is Important [49.903610684578716]
我々は,事前学習したCNNのBNパラメータに基づいて,各フィルタの重要性を評価することによって,簡易かつ効果的なフィルタ刈取法を提案する。
CIFAR-10とImageNetの実験結果から,提案手法が優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2021-12-02T12:04:59Z) - A novel Deep Neural Network architecture for non-linear system
identification [78.69776924618505]
非線形システム識別のための新しいDeep Neural Network (DNN)アーキテクチャを提案する。
メモリシステムにインスパイアされたインダクティブバイアス(アーキテクチャ)と正規化(損失関数)を導入する。
このアーキテクチャは、利用可能なデータのみに基づいて、自動的な複雑性の選択を可能にする。
論文 参考訳(メタデータ) (2021-06-06T10:06:07Z) - Learning Sparse Filters in Deep Convolutional Neural Networks with a
l1/l2 Pseudo-Norm [5.3791844634527495]
ディープニューラルネットワーク(DNN)は、多くのタスクで効率的であることが証明されているが、高いメモリと計算コストが伴う。
近年の研究では、それらの構造は性能を損なうことなくよりコンパクトにすることができることが示されている。
フィルタ係数に定義された比 l1/l2 の擬ノルムに基づいて, 疎度誘導正規化項を提案する。
論文 参考訳(メタデータ) (2020-07-20T11:56:12Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
雑音の多い実環境下での正確な音像定位のための純粋スパイクニューラルネットワーク(SNN)に基づく計算モデルを提案する。
このアルゴリズムを,マイクロホンアレイを用いたリアルタイムロボットシステムに実装する。
実験の結果, 平均誤差方位は13度であり, 音源定位に対する他の生物学的に妥当なニューロモルフィックアプローチの精度を上回っていることがわかった。
論文 参考訳(メタデータ) (2020-07-07T08:22:56Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。